Впрочем, это перестает удивлять, если познакомиться с ролью, которую отводят пустоте индийская космология и мифы о творении. Шива – это бог-творец Вселенной, но он же и ее разрушитель. Когда он танцует, сотрясается Земля – и вся Вселенная воспламеняется и рушится от ударов божественного ритма. Все разъединяется, чтобы собраться в
Знакомство индийцев с идеей пустоты позволяет лучше понять, почему именно они первыми приписали нолю свойства числа со всеми присущими числу правилами и, воодушевленные позиционной системой записи, обеспечили ему вечную славу.
Совсем другое дело греки, для которых и ноль, и бесконечность – ужасны, это понятия, отвергаемые логикой, угрожающие установленному порядку. Идеал совершенства – бытие Парменида, оно представлено сферой, всегда тождественной себе во времени и пространстве и, главное, ограниченной. Конечность для греков синонимична совершенству, а сама идея ноля эквивалентна проклятию. Как может
По этой причине западноевропейская культура построила своего рода табу вокруг идеи ноля, распространившееся со временем и на идею пустоты. От этого предрассудка, все еще оказывающего свое влияние на наше мышление, нам нужно освободиться, чтобы понять механизм того, как из пустоты рождается Вселенная.
Но вакуум, о котором говорим мы, – это не концепция философов, это особая материальная система, не содержащая вещества и не обладающая энергией. Это состояние с нулевой энергией, но это такая же физическая система, как и любая другая, ее можно исследовать, измерять, описывать.
Много лет физики проводят над этой системой бесчисленные эксперименты. Они используют самое изощренное экспериментальное оборудование, чтобы изучать ее странные свойства и благодаря этому понять детали того, как вакуумное состояние влияет на характерные параметры элементарных частиц. Некоторые прямо-таки мечтают открыть в вакууме новые физические явления, которые, будучи освоены, позволят создавать новые технологии.
Как и для любой другой физической системы, для вакуума справедлив принцип неопределенности, определяющий поведение системы на микроскопическом уровне. Энергия и собственное время для любой системы, даже находящейся в вакуумном состоянии, не могут быть одновременно измерены с произвольной точностью: произведение неопределенностей каждого из них не может быть меньше некоторого минимального значения. Когда мы говорим, что у вакуума нулевая энергия, то подразумеваем, что, произведя достаточно большое число измерений, мы получим нулевое среднее значение, однако каждое одиночное измерение дает некоторое флуктуирующее, то положительное, то отрицательное, значение, отличное от нуля, и все они распределяются по некой статистической кривой вокруг среднего нулевого значения. Принцип неопределенности гласит, что чем короче временной интервал измерения, тем большие флуктуации энергии обнаружатся при ее измерении.
В сущности, эта особенность указывает просто-напросто на неизбежные возмущения системы во время измерения, однако есть в ней и кое-что более глубокое, связанное с поведением материи на микроскопическом уровне. Система в вакуумном состоянии обладает энергией, строго равной нулю: она должна наблюдаться при измерениях, достаточно протяженных во времени, теоретически – бесконечных, но при измерениях более коротких система должна флуктуировать, как и любая другая, проходя через все свои возможные состояния, включая те, очень маловероятные, когда ее энергия сильно отличается от нулевого значения. Одним словом, неопределенность предполагает образование в вакууме на короткое время микроскопических сгустков энергии, очень быстро распадающихся. Чем меньше энергия такого аномального сгустка, тем дольше он может сохраняться.