Оператор набирает определенную букву и, в зависимости от положения шифратора, она может быть зашифрована с помощью любого из сотен шифралфавитов. После этого положение шифратора меняется, так что когда в машину вводится следующая буква, она зашифровывается уже с помощью другого шифралфавита. К тому же все это производится исключительно эффективно и точно благодаря автоматическому перемещению шифраторов и высокой скорости электричества.
Прежде чем приступить к подробному объяснению, как Шербиус предполагал применять свою шифровальную машину, необходимо рассказать еще о двух элементах «Энигмы», которые показаны на рисунке 36. Во-первых, в стандартной шифровальной машине Шербиуса в целях увеличения стойкости использовался третий шифратор; для полного алфавита из 26 букв эти три шифратора дают 26 х 26 х 26, или 17 576 различных положений шифраторов. Во вторых, Шербиус добавил
Рис. 36 Конструкция «Энигмы» Шербиуса с третьим шифратором и отражателем, который направляет ток обратно через шифраторы. Для данного расположения ввод с клавиатуры буквы b приведет к загоранию D на панели с лампочками, которая показана рядом с клавиатурой.
На первый взгляд кажется бессмысленным добавлять к машине неподвижный отражатель, который не приводит к увеличению количества шифралфавитов. Однако польза от него станет ясна, когда мы будем рассматривать, как же в действительности используется эта машина для шифрования и расшифрования сообщения.
Допустим, оператор хочет отправить криптограмму. Прежде чем приступить к шифрованию, оператор должен вначале повернуть шифраторы, установив их в определенное начальное положение. Существует 17 576 возможных расположений и, соответственно, 17 576 возможных начальных установок. Начальные положения шифраторов будут определять, каким образом зашифровывается сообщение. Мы можем рассматривать «Энигму» как обобщенную шифрсистему, в которой способ зашифровывания определяется начальными установками. Другими словами, начальные установки обуславливают ключ. Начальные установки обычно задаются в шифровальной книге, в которой указаны ключи на каждый день и которая имеется у всех в коммуникационной сети. Для распространения шифровальных книг требуется время и усилия, но поскольку в день нужен только один ключ, то можно, например, предусмотреть рассылку шифровальных книг, содержащих 28 ключей, только один раз в четыре недели. Для сравнения, если бы в войсках пришлось бы применять одноразовые шифрблокноты, то для каждого сообщения требовался бы новый ключ, и задача распределения ключей оказалась бы несоизмеримо сложнее. Как только шифраторы будут установлены в положения, задаваемые ключом текущего дня из шифровальной книги, отправитель может начинать зашифровывание. Он вводит с клавиатуры первую букву сообщения, смотрит, какая буква высвечивается на панели с лампочками, и записывает ее как первую букву шифртекста. Затем, как только первый шифратор автоматически повернется на одну позицию, отправитель вводит вторую букву сообщения и так далее. После того как шифртекст будет полностью подготовлен, он вручается радисту, который передает его получателю сообщения.
Чтобы расшифровать сообщение, получателю необходимо иметь другую «Энигму» и копию шифровальной книги, в которой указаны начальные положения шифраторов на текущий день. Получатель устанавливает машину в соответствии с книгой, набирает букву за буквой шифртекст, и на панели с лампочками считывает открытый текст. Другими словами, отправитель набирал открытый текст, чтобы получить шифртекст, а здесь получатель набирает шифртекст, чтобы получить открытый текст, то есть зашифровывание и расшифровывание являются зеркальными процессами. Простота расшифровывания обеспечивается благодаря отражателю. Из рисунка 36 можно видеть, что вводя с клавиатуры Ь
и двигаясь далее по электрической цепи, мы окажемся у В. Но точно так же, вводя с клавиатуры d двигаясь далее по электрической цепи, мы вернемся к В.