Читаем Код бестселлера полностью

Заглавные буквы после косой черты – сокращенные обозначения частей речи. Слово hope было правильно опознано в первом предложении как существительное (NN), во втором – как глагол (VBD), а в третьем – как имя собственное (NNP). Для размеченного таким образом текста легко написать программу, которая извлечет только существительные, помеченные NN. Так мы получим существительные – кирпичики, из которых строится фундамент: опираясь на них, компьютер выделяет из текста темы.

Исследователи используют разные способы обучения компьютеров распознаванию частей речи. Но в большинстве этих способов задействован обширный корпус предложений, уже размеченных людьми. Специалисты по грамматике часами сидят над текстами, помечая части речи, а затем эти размеченные предложения загружают в программу в качестве обучающих данных. На основе этих данных машина строит статистическую модель, которая вычисляет вероятность появления той или иной комбинации слов. Например, компьютер может заметить, что после слова the в 55 % случаев стоит существительное, в 40 % – прилагательное и в 5 % – числительное. Конечно, такие программы разбора тоже иногда ошибаются, но очень редко – так редко, что, по мнению некоторых исследователей, задача компьютерного разбора по частям речи «уже решена». Другие исследователи возражают, но не слишком активно. Программа разбора по частям речи, разработанная в Стэнфордском университете, работает с точностью 97–100 %. Такая точность, безусловно, годится для большинства задач анализа текстов – в том числе тех, что мы решали при исследовании бестселлеров.

Распознавание именованных сущностей (NER) – другая область обработки естественного языка, тесно связанная с нашими исследованиями. Именованная сущность – это человек, географический объект или организация: Лисбет Саландер, Нью-Йорк, Microsoft. Распознавание подобных грамматических объектов позволяет находить ответы на разные вопросы – например, влияет ли место, где происходит действие романа, на факт его попадания в списки бестселлеров? Мы, разумеется, задались этим вопросом и обнаружили следующее: для того, станет ли роман бестселлером, важно, происходит ли действие в городе или где-нибудь в лесу. Конкретный город не важен. Роман, герои которого живут в Нью-Йорке, имеет столько же шансов, сколько и роман, герои которого живут в Стокгольме.

В 5-й главе мы использовали NER для лучшего понимания героев книг и исследования их агентивности. Но еще важнее для изучения персонажей оказался метод, называемый разбором зависимостей. Программы для разбора зависимостей анализируют предложение и размечают его синтаксическую структуру. Программа разбора понимает, какие слова связаны между собой и где в предложении подлежащее, сказуемое и дополнение. Как и описанный выше алгоритм разбора по частям речи, эта программа использует информацию из предложений, предварительно разобранных специалистами-людьми. Эта информация помогает определять наиболее вероятную структуру введенных в программу предложений. Для 5-й главы нам нужно было исследовать агентивность героев на основе глаголов, обычно связанных с мужскими и женскими персонажами[253]. Возьмем, например, это предложение из «Сферы»:

Mae knew Renata was watching her, and she knew her face was betraying something like horror[254]. Пропустив это предложение через программу разбора зависимостей, получаем на выходе следующее:[255]

nsubj(knew-2, Mae-1)

root(ROOT-0, knew-2)

nsubj(watching-5, Renata-3)

aux(watching-5, was-4)

ccomp(knew-2, watching-5)

dobj(watching-5, her-6)

cc(knew-2, and-8)

nsubj(knew-10, she-9)

conj(knew-2, knew-10)

nmod: poss(face-12, her-11)

nsubj(betraying-14, face-12)

aux(betraying-14, was-13)

ccomp(knew-10, betraying-14)

dobj(betraying-14, something-15)

case(horror-17, like-16)

nmod(betraying-14, horror-17)

Первая строка вывода показывает связь подлежащего (Mae)[256] с основным глаголом (knew)[257]. Кстати сказать, цифры рядом со словами показывают их порядок в предложении: Mae – первое слово, knew – второе, затем идет Renata и т. д. Обратите внимание: программа заметила связь между Ренатой, другим персонажем романа и глаголом watching[258], а также между местоимением she и вторым вхождением глагола knew. Объединив результаты анализа зависимостей и данные об именах персонажей, полученные с помощью NER, мы смогли понять, какие глаголы характерны для того или иного персонажа. Например, в этом предложении Мэй знает, а Рената наблюдает.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес