Хассабис утверждает, что игра го застряла, если использовать математический термин, на локальном максимуме. Посмотрите на рельеф, изображенный на иллюстрации, и представьте себе, что вы находитесь на пике А. Выше уже не поднимешься. Это и называется локальным максимумом. Если вас окружает туман, вы можете подумать, что находитесь на высочайшей точке данной местности. Но через долину от вас расположен еще более высокий пик. Однако узнать об этом нельзя без того, чтобы рассеялся туман. А чтобы на него подняться, вам придется спуститься со своего пика и пересечь долину.
Проблема современного го состоит в том, что установившиеся традиции игры касаются методов, позволяющих игрокам достичь пика А. Нарушив эти традиции, программа AlphaGo развеяла туман и показала нам еще более высокий пик В. Разницу высот этих пиков даже можно измерить. Игрок в го, следующий правилам пика А, обычно проигрывает сопернику, который применяет новые стратегии, открытые AlphaGo, – два камня.
Радикальное обновление традиций игры в го случалось в ее истории и раньше, и даже неоднократно. В последний раз новаторские методы игры предложил в 1930-х годах легендарный Го Сэйгэн[21]
. Его эксперименты с дебютами произвели в го настоящую революцию. Однако теперь игроки признают, что программа AlphaGo, возможно, положила начало революции еще более масштабной.Китайский чемпион по го Ке Цзе считает, что мы вступаем в новую эру: «Человечество играет в го тысячелетиями, и все же, как показал нам искусственный интеллект, мы еще не освоили и малой части этой игры. Союз людей и компьютеров, играющих в го, откроет перед нами новую эру».
Гу Ли, соотечественник Ке Цзе и победитель большинства международных турниров по го, добавляет: «Работая вместе, люди и искусственный интеллект вскоре познают глубочайшие тайны го». Хассабис сравнивает свой алгоритм с телескопом «Хаббл». Это сравнение отражает взгляд многих на новый искусственный интеллект такого рода. Это инструмент, позволяющий исследовать глубже, дальше, шире, чем когда-либо раньше. Он должен не заменить человеческое творчество, но стимулировать его.
И все же я вижу в этой ситуации нечто весьма угнетающее. Стремление стать чемпионом мира по го кажется почти бессмысленным, когда заранее известно, что на свете существует машина, которую ты никогда не сможешь обыграть. Профессиональные игроки в го стараются бодриться, рассуждая о новом творческом начале, которое появилось теперь в их игре, но в сознании превосходства машины есть все-таки нечто угнетающее. Разумеется, машина была запрограммирована людьми, но от этого почему-то не намного легче.
Сейчас AlphaGo прекратила состязаться с другими игроками. Группа, занимавшаяся го в компании DeepMind, расформирована. Хассабис доказал, что его кембриджский преподаватель был неправ. DeepMind занимается теперь другими проблемами – здравоохранения, изменения климата, энергоэффективности, распознавания и синтезирования речи, компьютерного зрения. Все эти работы становятся очень серьезными.
Учитывая, что игра го всегда казалась мне защитой от проникновения компьютеров в занятия математикой, может ли область моей собственной работы стать следующей мишенью DeepMind? Чтобы по-настоящему оценить потенциал этого нового искусственного интеллекта, нам нужно будет более пристально рассмотреть принципы его работы и покопаться в его внутреннем устройстве. Но поразительнее всего то, что для создания программ, которые, возможно, оставят меня без работы, DeepMind использует те самые инструменты, которые веками создавали именно математики. Так может ли это математическое чудовище Франкенштейна обратиться против своего же создателя?
4
Алгоритмы – секрет современной жизни
Аналитическая машина ткет алгебраические
узоры точно так же, как жаккардовый
станок ткет цветы и листья.
Вся наша жизнь управляется алгоритмами. Каждый раз, когда мы ищем что-нибудь в интернете, планируем маршрут на GPS-навигаторе, выбираем фильм, рекомендованный Netflix, или назначаем свидание на сайте знакомств, нами руководит алгоритм. Алгоритмы прокладывают курс наших путешествий по цифровому веку, но мало кто осознает, что они появились на тысячи лет раньше компьютеров и находятся в самом сердце того, чем занимается математика.
Один из самых первых алгоритмов был разработан в эпоху зарождения математики в Древней Греции. В «Началах» Евклида, рядом с доказательством существования бесконечного количества простых чисел, мы находим инструкцию, следуя которой шаг за шагом можно решить следующую задачу: найти наибольшее число, являющееся делителем обоих данных чисел.