Читаем Код. Тайный язык информатики полностью

Возможно, вам захочется сравнить содержимое этого массива RAM с массивом, в котором хранятся слагаемые. В результате вы заметите, что каждый код в массиве «Код» соответствует значению в массиве «Данные», которое должно быть загружено в аккумулятор, прибавлено к его содержимому или сохранено в памяти. Используемые таким образом числовые коды часто называются кодами команд или кодами операций. Они дают схеме «команду» выполнить определенную «операцию».

Как я уже упоминал, выход 8-битной защелки исходного сумматора должен быть входом массива RAM «Данные». Так работает команда «Сохранить». Однако нам требуется внести еще одно изменение: изначально выход 8-битного сумматора — вход 8-битной защелки. Теперь для выполнения команды «Загрузить» выход массива «Данные» иногда должен соединяться со входом 8-битной защелки. Для этого необходим селектор двух линий на одну. Пересмотренная схема сумматора выглядит следующим образом.

На этой схеме еще чего-то не хватает, но она отображает все 8-битные потоки данных между различными компонентами. Шестнадцатибитный счетчик предоставляет адреса для двух массивов RAM. Выход массива «Данные» подключен ко входу 8-битного сумматора для выполнения команды «Сложить». Правда, ко входу 8-битной защелки может быть подключен либо выход массива «Данные» (в случае выполнения команды «Загрузить»), либо выход сумматора (в случае выполнения команды «Сложить»). В этой ситуации требуется селектор «2 на 1». Выходной сигнал защелки не только возвращается обратно в сумматор, но и подается на вход массива «Данные» для выполнения операции «Сохранить».

На схеме не хватает только контролирующих эти компоненты сигналов, которые называются управляющими; к ним относятся входы Clk и Clr 16-битного счетчика, входы Clk и Clr 8-битной защелки, вход W массива «Данные» и вход Sel селектора «2 на 1». Некоторые из этих сигналов, очевидно, будут основываться на выходе массива «Код». Например, вход Sel селектора «2 на 1» должен быть равен 0 (выбран выход «Данные» массива RAM), если выходной сигнал массива «Код» соответствует команде «Загрузить». Вход W массива «Данные» должен быть равен 1 только тогда, когда код соответствует команде «Сохранить». Эти управляющие сигналы могут генерироваться различными комбинациями логических вентилей.

Добавив несколько дополнительных компонентов и код новой команды, можем сделать так, чтобы наша схема вычитала число из значения, хранящегося в аккумуляторе. Первым делом нужно расширить таблицу кодов команд.

Операция

Код

Загрузить

10h

Сохранить

11h

Сложить

20h

Вычесть

21h

Остановить

FFh

Коды команд «Сложить» и «Вычесть» отличаются только младшим битом значения, который мы будем называть C0. Если значение кода команды равно 21h, то схема должна делать то же самое, что и в случае выполнения команды «Сложить», за исключением того, что данные из массива «Данные» инвертируются перед попаданием в сумматор, а для входа сумматора CI задается значение 1. Сигнал C0 может выполнять обе операции в обновленном сумматоре, дополненном инвертором.

Предположим, нам нужно сложить два числа: 56h и 2Ah, а затем из полученной суммы вычесть 38h. Это можно сделать, используя следующие коды и данные, хранящиеся в двух массивах RAM.

После выполнения операции «Загрузить» аккумулятор содержит значение 56h, после операции «Сложить» — сумму 56h и 2Ah, то есть 80h. Операция «Вычесть» приводит к инвертированию битов следующего значения в массиве «Данные» (38h). Инвертированное значение C7h прибавляется к 80h, при этом вход сумматора для переноса (CI) равен 1.

Результатом будет 48h (в десятичной системе счисления: 86 + 42 – 56 = 72).

Еще одной нерешенной проблемой остается недостаточная ширина канала данных сумматора и всех остальных подключенных к нему устройств. Ранее я предлагал удвоить количество 8-битных сумматоров (и всех остальных компонентов), чтобы получить 16-битные устройства.

Однако мы можем использовать гораздо менее дорогостоящее решение. Предположим, нужно сложить два 16-битных числа, например следующие.

Для получения суммы двух 16-битных чисел отдельно сложим их младшие байты (крайние справа).

А затем старшие (крайние слева).

В результате получится число 99D7h. Если мы сохраним два 16-битных числа в памяти, как показано на рисунке, результат D7h будет сохранен по адресу 0002h, а 99h — по адресу 0005h.

Разумеется, это будет работать не всегда. Такой метод подходит для сложения чисел, выбранных в качестве примера. Если нам требуется сложить числа 76ABh и 236Ch, при сложении двух младших байтов возникает перенос.

Этот перенос должен быть прибавлен к сумме двух старших байтов для получения окончательного результата — 9A17h.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука