Читаем Код. Тайный язык информатики полностью

Будучи инженером-разработчиком цифровых ИС, вы потратили бы множество часов на чтение справочника по микросхемам ТТЛ и изучение существующих чипов. Освоив инструменты, вы могли бы собрать из микросхем ТТЛ компьютер, описанный в главе 17. Соединить между собой микросхемы намного проще, чем отдельные транзисторы. Однако вы вряд ли бы захотели использовать схемы ТТЛ для создания массива RAM объемом 64 килобайт. Объем самого емкого чипа RAM, описанного в справочнике The TTL Data Book for Design Engineers 1973 года, составлял всего 256 × 1 бит. Для создания массива RAM объемом 64 килобайт вам понадобилось бы 2048 таких чипов! Микросхемы ТТЛ никогда не были оптимальной технологией для создания памяти. К этой теме я вернусь в главе 21.

Вероятно, вы решите использовать осциллятор. Несмотря на возможность подключения выхода ТТЛ-инвертора к его же входу, лучше иметь осциллятор с более предсказуемой частотой. Такой осциллятор можно легко собрать, используя кристалл кварца, который помещается в небольшой плоский цилиндрический корпус с двумя выводами. Эти кристаллы вибрируют с определенной частотой, которая обычно составляет по меньшей мере миллион циклов в секунду. Миллион циклов в секунду соответствует частоте один мегагерц. Если бы компьютер, описанный в главе 17, был собран из микросхем ТТЛ, он бы нормально работал с тактовой частотой десять мегагерц. На выполнение каждой инструкции уходило бы 400 наносекунд. Это, безусловно, многократно превышает скорость работы релейных устройств.

Другим популярным семейством чипов является КМОП (комплементарная структура металл — оксид — полупроводник), или CMOS (complementary metal-oxide-semiconductor). Если бы в середине 1970-х в свое свободное время вы собирали схемы из чипов КМОП, то в качестве справочника могли бы использовать книгу CMOS Databook, опубликованную компанией National Semiconductor. Эта книга содержит информацию о микросхемах КМОП серии 4000.

Потребляемая мощность микросхем ТТЛ — от 4,75 до 5,25 вольта, для микросхем КМОП — от 3 до 18 вольт. Довольно большой диапазон! Кроме того, микросхемы КМОП потребляют гораздо меньше энергии по сравнению с ТТЛ-чипами, что делает возможным создание на их основе небольших устройств, работающих от батареек. Недостаток микросхемы КМОП — низкая скорость работы. Например, гарантированное время установки 4-битного полного сумматора КМОП 4008, работающего от напряжения 5 вольт, — 750 наносекунд. Скорость увеличивается по мере роста напряжения и составляет 250 наносекунд при десяти вольтах и 190 наносекунд — при 15 вольтах. Однако по этому показателю устройство на основе микросхем КМОП сильно отстает от 4-битного ТТЛ-сумматора, время установки которого 24 наносекунды. (Двадцать пять лет назад компромисс между скоростью микросхемы ТТЛ и низким энергопотреблением микросхемы КМОП был довольно явным. Сегодня существуют версии ТТЛ-чипов с малым энергопотреблением и высокоскоростные версии микросхем КМОП.)

На практике соединение микросхем начинается на пластиковой макетной плате.

Каждые пять отверстий электрически соединены под пластмассовым основанием. Микросхема вставляется в макетную плату так, чтобы она опиралась на длинную центральную борозду, а ее выводы попадали в отверстия по обе стороны. Каждый вывод ИС при этом электрически совмещается с четырьмя другими отверстиями. Микросхемы объединяются с помощью проводов, вставляемых в другие отверстия.

Вы можете обеспечить постоянное соединение микросхем, используя технологию под названием монтаж накруткой. В данном случае каждая микросхема вставляется в гнездо с длинными квадратными штырьками.

Каждый штырек соответствует выходу микросхемы. Сами гнезда располагаются в тонких перфорированных платах. С обратной стороны платы вы используете специальный моточный агрегат для того, чтобы плотно обмотать штырек тонким изолированным проводом. Острые края штырька прорывают изоляцию, благодаря чему между штырьком и проводом возникает электрическое соединение.

Если бы вы занимались производством конкретного устройства на основе ИС, вероятно, использовали бы печатную плату. В былые времена ее мог изготовить даже любитель. Плата — это пластина с отверстиями, покрытая тонким слоем медной фольги. Те участки фольги, которые требуется сохранить, покрываются кислотостойким веществом, после чего остальная часть протравливается кислотой. Затем вы можете припаять гнезда ИС (или сами ИС) непосредственно к медному покрытию. Однако из-за большого количества взаимосвязей между ИС оставшейся области медной фольги обычно оказывается недостаточно, поэтому изготавливаемые промышленным способом печатные платы имеют несколько уровней межсоединений.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука