Будучи инженером-разработчиком цифровых ИС, вы потратили бы множество часов на чтение справочника по микросхемам ТТЛ и изучение существующих чипов. Освоив инструменты, вы могли бы собрать из микросхем ТТЛ компьютер, описанный в главе 17. Соединить между собой микросхемы намного проще, чем отдельные транзисторы. Однако вы вряд ли бы захотели использовать схемы ТТЛ для создания массива RAM объемом 64 килобайт. Объем самого емкого чипа RAM, описанного в справочнике The TTL Data Book for Design Engineers 1973 года, составлял всего 256 × 1 бит. Для создания массива RAM объемом 64 килобайт вам понадобилось бы 2048 таких чипов! Микросхемы ТТЛ никогда не были оптимальной технологией для создания памяти. К этой теме я вернусь в главе 21.
Вероятно, вы решите использовать осциллятор. Несмотря на возможность подключения выхода ТТЛ-инвертора к его же входу, лучше иметь осциллятор с более предсказуемой частотой. Такой осциллятор можно легко собрать, используя кристалл кварца, который помещается в небольшой плоский цилиндрический корпус с двумя выводами. Эти кристаллы вибрируют с определенной частотой, которая обычно составляет по меньшей мере миллион циклов в секунду. Миллион циклов в секунду соответствует частоте один
Другим популярным семейством чипов является
Потребляемая мощность микросхем ТТЛ — от 4,75 до 5,25 вольта, для микросхем КМОП — от 3 до 18 вольт. Довольно большой диапазон! Кроме того, микросхемы КМОП потребляют гораздо меньше энергии по сравнению с ТТЛ-чипами, что делает возможным создание на их основе небольших устройств, работающих от батареек. Недостаток микросхемы КМОП — низкая скорость работы. Например, гарантированное время установки 4-битного полного сумматора КМОП 4008, работающего от напряжения 5 вольт, — 750 наносекунд. Скорость увеличивается по мере роста напряжения и составляет 250 наносекунд при десяти вольтах и 190 наносекунд — при 15 вольтах. Однако по этому показателю устройство на основе микросхем КМОП сильно отстает от 4-битного ТТЛ-сумматора, время установки которого 24 наносекунды. (Двадцать пять лет назад компромисс между скоростью микросхемы ТТЛ и низким энергопотреблением микросхемы КМОП был довольно явным. Сегодня существуют версии ТТЛ-чипов с малым энергопотреблением и высокоскоростные версии микросхем КМОП.)
На практике соединение микросхем начинается на пластиковой
Каждые пять отверстий электрически соединены под пластмассовым основанием. Микросхема вставляется в макетную плату так, чтобы она опиралась на длинную центральную борозду, а ее выводы попадали в отверстия по обе стороны. Каждый вывод ИС при этом электрически совмещается с четырьмя другими отверстиями. Микросхемы объединяются с помощью проводов, вставляемых в другие отверстия.
Вы можете обеспечить постоянное соединение микросхем, используя технологию под названием
Каждый штырек соответствует выходу микросхемы. Сами гнезда располагаются в тонких перфорированных платах. С обратной стороны платы вы используете специальный моточный агрегат для того, чтобы плотно обмотать штырек тонким изолированным проводом. Острые края штырька прорывают изоляцию, благодаря чему между штырьком и проводом возникает электрическое соединение.
Если бы вы занимались производством конкретного устройства на основе ИС, вероятно, использовали бы