Читаем Когда фотон встречает электрон. Фейнман. Квантовая электродинамика полностью

Дальнейшее развитие принципа наименьшего действия было связано с именем Жозефа Луи Лагранжа. В 1788 году он опубликовал свой труд «Аналитическая механика», который лег в основу лагранжевой механики. Лагранж переформулировал механику Ньютона. В лагранжевой механике траектория вычисляется при помощи нахождения пути, который минимизирует действие. В основе вычислений лежит интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией (лагранжиан). Использование лагранжиана позволяло решать некоторые проблемы, неразрешимые посредством ньютоновского подхода. Хотя школьник Фейнман был очарован принципом наименьшего действия, студент Фейнман был от него в ужасе. Его друг Тед Велтон позже заявлял:


«Фейнман отказывался соглашаться с тем, что Лагранж мог быть полезен в физике. Мы все были взволнованы элегантностью и полезностью его формулы, но Дик упрямо настаивал на том, что настоящая физика основана на идентификации сил и на правильном определении их составляющих».


По иронии судьбы, самый большой вклад Фейнмана в физику был сделан благодаря использованию этого подхода, который он так ненавидел в течение своих студенческих лет.

Революция в действии


Мир физики продвигался вперед гигантскими шагами. Весной 1938 года на устах всех ученых, работающих в этой области, были такие слова, как «ядерное деление» и «цепная реакция».

Все задумывались над способом выражения энергетического потенциала атомного ядра. МТИ решил предложить своим студентам семинар Морса на тему структуры ядра. Очевидно, что ни Фейнман, ни Велтон не упустили бы такую возможность. Напряжение витало в воздухе от всеобщего предчувствия того, что еще немного — и кто-нибудь найдет доказательства возможности расщепить атом. Так и случилось: в конце этого же года немцы Отто Ган и Фриц Штрассман при помощи Лизы Мейтнер сумели расщепить ядро урана.


Реальный опыт часто противоречит фундаментальным законам.

Ричард Фейнман


Снова Велтон и Фейнман надолго оказались на неизвестной территории без какого-либо гида. Всякий, кто желал знать больше относительно ядерной физики, должен был изучить три монументальных статьи Ханса Бете, опубликованные в журнале Reviews of Modem Physics и известные как «Библия Бете». Фейнман заинтересовался ядерной физикой, что спустя несколько лет привело его к работе над созданием первой атомной бомбы. Его преподаватели были так восхищены своим учеником, что порекомендовали выдать ему диплом на год раньше: через три года обучения, вместо положенных четырех лет. Но университет отказал в их просьбе. Во время последнего учебного года Фейнман работал над своей первой научной статьей под названием «Молекулярные силы » (опубликованной в Physical Review), ходил на лекции по металлургии, а также придумал странный аппарат для измерения зависимости между скоростями двух осей при их вращении...

Осенью 1938 года, когда до получения диплома оставалось совсем немного, отец Фейнмана приехал в МТИ, чтобы встретиться с Морсом и узнать у него, был ли его сын достаточно прилежным. Преподаватель ответил однозначно: Фейнман был самым блестящим студентом, которого он когда-либо знал. Мелвилл мечтал видеть сына ученым еще со времени беременности своей жены, и вот, наконец, его заветное желание становилось реальностью. Но Фейнман еще должен был выбрать, чем он будет заниматься после учебы. Он хотел остаться в МТИ, но Джон Слейтер настоял, чтобы Ричард ехал куда-нибудь в другое место, «открывать для себя мир».

Гарвардский университет предложил ему место после математического конкурса William Powell Putnam, самого престижного испытания для университетских студентов. Никто не мог решить все конкурсные задачи, а значительный процент учащихся не мог справиться даже с одной. В 1939 году разрыв между результатами Фейнмана и других участников был настолько велик, что он удивил даже членов жюри. Тогда, не колеблясь, они предложили ему место в Гарварде, однако он отклонил предложение, так как его интересовал Принстон. Почему? Наверное, потому что в Принстоне, в Институте перспективных исследований, преподавал Эйнштейн; возможно, также и потому что многие статьи по физике, которые он читал в библиотеке, были написаны в университете Принстона.


Глава 2


От Принстона до атомной бомбы




Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии