Данный феномен показывает нам, что наблюдаемый заряд электрона не соответствует его «голому» неэкранированному заряду. Как объяснить это? Давайте вспомним, что электрон перемещается всегда в окружении облака виртуальных пар электрон-позитрон. Электрическое поле приводит к тому, что виртуальные позитроны притягиваются к электрону, тогда как виртуальные электроны отталкиваются от него. Исходя из этого будет невозможно измерить реальный заряд электрона, его «голый» заряд, так как он погружен в облако виртуальных позитронов. Эффективный заряд электрона будет соответствовать его неэкранируемому заряду, плюс корректировка КЭД: eeft
= e0 + e· Как в случае с массой, мы ожидаем, что е будет намного ниже, чем е0. Но в действительности все получается наоборот.
Расчет и перерасчет
В принципе, два электрона, которые взаимодействуют, могут обмениваться либо одним единственным виртуальным фотоном, либо двумя, тремя, семью тысячами, 3459494... И чем больше фотонов, тем сложнее будет уравнение, описывающее взаимодействие этих электронов. Применяя теорию возмущений, физики классифицируют разные взаимодействия, чтобы сложить их в специальном порядке, группами, кратными заряду электрона в квадрате, е^2. Таким образом, когда два электрона обмениваются фотоном, их вклад соответствует е^2; если обмениваются двумя фотонами, полученный результат пропорционален е4
; если в обмене участвуют три фотона, тогда результат соответствует е6. По теории, если просуммировать все возможные значения, то сумма будет стремиться к бесконечности. На практике физики прекращают подсчет после того, как просуммируют определенное количество значений.
Немецкий физик Ганс Эйлер в 1937 году.
Вклад Эйлера
Подход кажется простым, но он очень сложен для применения на практике. Вот один наглядный пример. Ганс Эйлер (1909-1941), немецкий ученый, работал с Гейзенбергом в университете Лейпцига. В течение лета 1934 года он занимался на первый взгляд не очень сложными расчетами дисперсии света под влиянием света (то есть взаимодействие света с самим собой), которые невозможно сделать, если игнорировать виртуальные частицы. Для выполнения своих расчетов он использовал теорию возмущений. Через 19 месяцев он смог рассчитать лишь значение е4
. Иными словами, он смог включить в свои уравнения только одну единственную виртуальную пару электрон-позитрон. Эта огромная работа, проведенная Эйлером и за которую он получил докторскую степень, занимает 55 страниц в журнале Annalen der Physik.
Как объяснить это явление? Вспомним принцип неопределенности Гейзенберга, который позволяет виртуальным частицам появляться с почти неограниченной энергией. В этом бурном море пар электронов-позитронов единственным правилом является их срок существования, зависящий от энергии, с которой они появляются: чем больше энергия, тем меньше они существуют. Как следствие, ничто не мешает этим парам виртуальных частиц возникать всегда с большими энергиями, чем они отдают, согласно принципу неопределенности. Кроме этих вопросов, вторая более конкретная проблема, характерная для расчетов КЭД, — ее долгий и скучный формализм. Простая операция могла занимать месяцы; изучение всех различных способов, которыми виртуальные частицы могли вести себя, вело к алгебраическому кошмару.