Читаем Когда прямые искривляются полностью

ТРЕХМЕРНЫЕ МАТРИЦЫ

Понятие пиксельной таблицы или матрицы может быть обобщено для трехмерной компьютерной графики, где аналогичная трехмерная таблица состоит из кубических блоков — вокселей. В этом случае информация о цвете хранится в кубических элементах, расположенных в трехмерной матрице. Хотя воксели являются мощным инструментом для передачи сложных форм, они требуют много памяти. Поэтому трехмерные изображения, как правило, хранятся в виде векторной графики.



* * *

Системы автоматизированного проектирования (САПР)


Архитектурные чертежи и промышленные модели традиционно представлялись двумерными проекциями различных видов, например, виды сверху, спереди и сбоку и перспективный вид. Такие чертежи использовались инженерами для изображения своих идей и, в частности, для показа другим. Компьютеры произвели настоящую революцию в мире дизайна.



Сегодня системы автоматизированного проектирования являются основным инструментом для рисования проекций. Однако прежде чем сесть за работу над проектом, инженеру необходимо запрограммировать оборудование так, чтобы оно понимало, что от него требуется. Вычислительная геометрия предоставляет математический аппарат, с помощью которого системы автоматизированного проектирования могут создавать чертежи.

Во-первых, программа использует набор геометрических фигур: прямые и ломаные линии, многоугольники, окружности, эллипсы и кривые Безье.

Кривые Безье были разработаны в 1962 г. для изображения кривых в технических чертежах. Пьер Безье (1910–1999), инженер компании «Рено», описал кривые этого вида в математических терминах. Они первоначально использовались для проектирования самолетов и автомобилей, но позже стали одним из элементов систем автоматизированного проектирования. Компьютерный язык PostScript (Постскрипт), используемый высококачественными принтерами, также основан на кривых Безье. Различные графические редакторы используют термин «безье» для названия некоторых из своих функций. Эти программы просты в использовании и уже давно стали стандартом в графическом дизайне. Все они основаны на векторных изображениях.

В мире систем автоматизированного проектирования растровые изображения считаются примитивным форматом, по крайней мере, с концептуальной точки зрения, поскольку они хранят информацию в пикселях и поэтому не столь гибки, как векторные изображения. Программы систем автоматизированного проектирования, которые генерируют векторную графику, позволяющую вращать, перемещать, увеличивать и изменять наклон отдельных деталей изображения, применяют точные преобразования и отдельные основные компоненты, чтобы показать полностью готовое изделие на экране.

* * *

КРИВЫЕ БЕЗЬЕ

Определять формы геометрически не так уж сложно. Точки на плоскости можно задать их координатами. Например, точка А имеет координаты (х1, у1), а точка В — (х2, у2). Это все, что нам нужно знать, чтобы провести прямую линию между ними. Квадратичные кривые Безье являются кривыми второго порядка и задаются тремя опорными точками. Например, шрифты типа True Туре состоят из кривых на основе квадратичных кривых Безье. Существуют также кубические кривые Безье и другие кривые, более высоких порядков.

* * *

Векторная графика идеальна, если изображение по каким-либо причинам необходимо увеличить. Как мы видели, векторные изображения можно увеличивать без ограничений.

С другой стороны, векторная графика не подходит для кодирования фотографий или видео. Практически все цифровые камеры сохраняют изображения в растровом формате. Почему? Одной из причин является то, что данные, описывающие векторную графику, должны пройти довольно сложную обработку, прежде чем они создадут окончательное изображение. Процессор должен быть достаточно мощным, чтобы выполнить необходимые расчеты и сделать это быстро. Если объем данных велик, вывод даже небольшого изображения на экран камеры может занять довольно много времени. Тем не менее, существует несколько форматов, которые используют комбинации векторных и растровых изображений.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика