Читаем Когда прямые искривляются полностью

Человеческий глаз и объектив фотокамеры улавливают частицы света, фотоны, которые отражаются от объектов. Свету, идущему от очень удаленных объектов, может потребоваться много времени, чтобы достичь наших глаз. Например, свет доходит от Солнца до Земли за 8 минут, а свет далекой звезды, возможно, шел к нам миллионы лет. С другой стороны, переднюю и более удаленную часть движущегося объекта мы видим одновременно, хотя свет от передней части был отражен немного раньше. Разница существует, и связана она с тем, что скорость света конечна. Объект действительно должен выглядеть удлиненным в направлении движения, но этот эффект растяжения компенсируется эффектом сокращения в нашем восприятии.

Теория Лоренца — Фицджеральда была основана на сложной идее взаимодействия вещества с эфиром, но в конце концов ученые были вынуждены признать, что эфира не существует.

Через 24 года после эксперимента Майкельсона — Морли Эйнштейн понял, что скорость света не зависит от движения источника света или наблюдателя. Скорость Земли не может быть добавлена или вычтена из скорости света в опыте Майкельсона — Морли. Теория Эйнштейна предсказывает то же время, 2d/с, для обратного движения, независимо от расположения оборудования.

Кроме того, теория относительности также позволяет предсказать сокращение длины в направлении движения точно на величину фактора Лоренца — Фицджеральда. Однако при объяснении результатов эксперимента Майкельсона — Морли это сокращение длины не имеет ничего общего с эфиром или с теорией Лоренца.

Теория Эйнштейна вообще исключает необходимость эфира. Объяснить релятивистское сокращение длины можно в рамках самой теории относительности. Это объяснение заключается в относительном движении объекта и наблюдателя. Длина объекта, движущегося почти со скоростью света, уменьшается в направлении движения (хотя этот эффект мы не можем наблюдать, как уже говорилось). Для движущегося объекта, наоборот, именно мы кажемся летящими почти со скоростью света и похожими на плоский блин в направлении движения.

Другим следствием теории относительности является то, что время при движении тоже сокращается. Рассмотрим двух наблюдателей, которые движутся с постоянной скоростью v по отношению друг к другу. Каждый из них будет видеть, что часы у другого наблюдателя идут медленнее, чем его собственные, медленнее в γ раз. Этот странный результат известен как «парадокс времени».

Список литературы

Devlin, К.: The Language of Mathematics, New York, Freeman & Co., 1988.

Euclid: Euclid’s Elements, Translated by Thomas L. Heath, Santa Fe, Green Lion Press, 2002.

Издание на русском языке: Начала Евклида. / Пер. с греч. и комм. Д. Д. Мордухая-Болтовского под ред. М. Я. Выгодского и И. Н. Веселовского. — М.—Л.: ГИТТЛ, Т.1.1948; Т.2 1949; Т.З 1950.

Eves, Н.: Fundamentals of Modern Elementary Geometry, Sudbury, MA, Jones and Bartlett Publishers, Inc, 1992.

Faber, R. L.: Foundations of Euclidean and Non-Euclidean Geometries, New York, Dekker, 1983.

Garfunkel, S. (coord. COMAP): For All Practical Purposes, New York, Freeman, 2008.

Greenberg, M.J.: Euclidean and Non-Euclidean Geometries, New York, Freeman, 1993.

Jacobs, H.R.: Geometry, New York, Freeman, 2003.

Krause, E. F.: Taxicab Geometry, New York, Dover, 1988.

Parker, S.: Albert Einstein and the Laws of Relativity, New York, Chelsea House Publishers, 1994.

Smart, J.R.: Modern Geometries, California, Brooks/Cole, Pacific Grove, 1988.

* * *

Научно-популярное издание

Выходит в свет отдельными томами с 2014 года

Мир математики

Том 4

Жуан Гомес

Когда прямые искривляются. Неевклидовы геометрии


РОССИЯ

Издатель, учредитель, редакция: ООО «Де Агостини», Россия

Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1

Письма читателей по данному адресу не принимаются.

Генеральный директор: Николаос Скилакис

Главный редактор: Анастасия Жаркова

Старший редактор: Дарья Клинг

Финансовый директор: Наталия Василенко

Коммерческий директор: Александр Якутов

Менеджер по маркетингу: Михаил Ткачук

Менеджер по продукту: Яна Чухиль

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика