Читаем Когда прямые искривляются полностью

Евклид начинает изложение с простых, очевидных утверждений, которые могут быть легко и интуитивно поняты и не подлежат сомнению. Он называет их определениями, постулатами и аксиомами, и из них он выводит свои предложения, которые доказываются с помощью цепочек рассуждений. Основы учения Евклида сформулированы в первой книге «Начал», которая содержит 23 определения, 5 постулатов и 48 предложений.

* * *

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Существует только пять правильных выпуклых многогранников. Возможно, именно поэтому греки уделяли им особое значение, соотнося их с четырьмя стихиями: тетраэдр (огонь), куб (земля), октаэдр (воздух), икосаэдр (вода); а додекаэдр олицетворял Вселенную. Правильные многогранники также известны как пять «Платоновых тел».

ТЕРМИНОЛОГИЯ ЕВКЛИДА

Предложение — истинное утверждение, которое уже доказано или должно быть доказано.

Теорема — предложение, которое может быть логически выведено из аксиом или из других ранее доказанных теорем с помощью принятых правил доказательства.

Постулат— предложение, истинность которого принимается без доказательства и лежит в основе дальнейших рассуждений; другими словами, допущение, лежащее в основе доказательства.

Аксиома — предложение, настолько ясное и очевидное, что оно не требует доказательств. Аксиомы более очевидны, чем постулаты.

* * *

Первоначальные определения из первой книги даются для точки, прямой линии, прямого угла и параллельных линий и лежат в основе евклидовой геометрии и других геометрий.

Определение 1. Точка есть то, что не имеет частей.

Определение 2. Линия — это длина без ширины.

[…]

Определение 4. Прямая линия есть та, которая равно расположена по отношению к точкам на ней.

[…]

Определение 10. Когда же прямая, восставленная на другой прямой, образует смежные углы, равные между собой, то каждый из углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.

[…]

Определение 23. Параллельные — суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.

Затем формулируются следующие аксиомы.

1. Равные одному и тому же равны и между собой.

2. Если к равным прибавляются равные, то и целые будут равны.

3. Если от равных отнимаются равные, то остатки будут равны.

4. Совмещающиеся друг с другом равны между собой.

3. Целое больше части.

В отношении фигур Евклид не говорит об их равенстве, а старается использовать слово «конгруэнтность». В общем случае под конгруэнтностью геометрических фигур понимается тот факт, что при наложении друг на друга они совпадают.

Далее Евклид формулирует пять знаменитых постулатов.

I. От всякой точки до всякой точки можно провести прямую линию.

II. Любой отрезок можно непрерывно продолжать по прямой линии.

III. Имея любой отрезок, можно описать круг с радиусом, равным длине этого отрезка, и с центром в одном из концов этого отрезка.

IV. Все прямые углы равны между собой.

V. Если две прямые пересекаются третьей, так что с одной стороны сумма внутренних углов меньше двух прямых углов, то эти две прямые неизбежно пересекаются друг с другом по эту сторону, будучи продленными достаточно далеко.

В соответствии с пятым постулатом, если сумма углов меньше двух прямых углов, то прямые линии будут сходиться (пересекутся). Значит, верно и обратное: если сумма углов больше двух прямых углов, то прямые линии никогда не пересекутся (они будут расходиться). Что произойдет, если сумма углов равна двум прямым углам? Тогда прямые линии и не сходятся, и не расходятся, то есть они будут параллельными и никогда не пересекутся. Однако пятый постулат вскоре стал вызывать сомнения. Во-первых, его формулировка является более сложной, чем у других постулатов, и не кажется интуитивно ясной. Даже Евклид долго не использует пятый постулат, пока не формулирует предложение 32:

«Сумма углов треугольника равна двум прямым углам (180°)».

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика