Одни ученые, такие как Бойль, Дальтон и Менделеев, посвятили свою жизнь поиску частей, из которых состоит наш мир, а другие в это время пытались открыть и понять те невидимые силы, что заставляют тела взаимодействовать и переходить друг в друга. Сэр Исаак Ньютон, чей день рождения в 1642 г. пришелся на Рождество, обладал редким талантом улавливать связи в природе и угадывать законы, управляющие ее поведением. Сформулированные Ньютоном законы механики превратили физическую науку из пестрого набора отрывочных фактов в стройную систему, обладающую невиданной доселе предсказательной силой. Они дают описание того, как силы - сближающие и удаляющие - направляют все тела в мире по присущему им пути.
Если задать положения и скорости системы тел и учесть все до единой силы, действующие на них, законы Ньютона однозначно предскажут, что с этой системой случится потом. В отсутствие внешних сил или же если все силы уравновешивают друг друга, покоящееся тело будет и дальше оставаться в покое, а движущиеся тела будут продолжать двигаться с постоянной скоростью, по
Как известно, Ньютон показал, что гравитация - универсальная сила, действующая между любыми массивными телами. Луна, Международная космическая станция или крошка хлеба, сброшенная с закусочного столика своенравным муравьем, - все они притягиваются к Земле. Чем больше у тел массы, тем сильнее между ними сила притяжения. Таким образом, в физике масса играет двоякую роль: характеризует силу тяготения и определяет величину ускорения. Из-за этого она полностью исчезает из уравнения, определяющего ускорение под действием силы тяжести. Другими словами, когда тела притягиваются, например, к Земле, они ускоряются одинаково независимо от массы. Если бы не свистящий в ушах воздух, (вымерший) водный слон и мышь, соревнующиеся в прыжках с 10-метровой вышки, вошли бы в воду одновременно. Тот факт, что гравитационное ускорение тела не зависит от его массы, ставит гравитацию на особое место среди сил природы.
Силы притяжения - хорошее средство, с помощью которого можно собирать большие системы из маленьких, во всяком случае, в астрономических масштабах. Возьмите медленно блуждающие тут и там комочки, подождите, пока сила притяжения возьмет свое, и вы увидите, как они начинают скучиваться (если, конечно, нет более мощных сил отталкивания). Притяжение естественным образом объясняет, как материя может собираться из более мелких частей. Неудивительно, что Ньютон выбрал атомизм. Он считал, что из крошечных корпускул состоит не только материя, но и свет.
В своем трактате об оптике Ньютон писал: «При размышлении о всех этих вещах мне кажется вероятным, что Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в отношении к пространству, которые более всего подходили бы к той цели, для которой он создал их. Эти первоначальные частицы, являясь твердыми, несравнимо тверже, чем всякое пористое тело, составленное из них, настолько тверже, что они никогда не изнашиваются и не разбиваются в куски. Никакая обычная сила не способна разделить то, что создал сам Бог при первом творении»9.
Вера Ньютона в то, что это Бог придумал атомы, отражает его глубоко религиозные взгляды на происхождение мироздания. Великий ученый считал, что только бессмертное существо способно сконструировать, запустить и время от времени регулировать в остальном механическую Вселенную. Пример Ньютона наряду с не менее набожным Бойлем показывает, как атомизм и религия могли уживаться в одном человеке.
Из работ Ньютона следовало, что Солнечная система управляется силами тяготения. Они выходят на передний план на астрономических масштабах, но вот чтобы удерживать вместе атомы, гравитация слишком слаба. В связанном состоянии атомы существуют благодаря электростатической силе, представляющей собой частный случай электромагнитного взаимодействия. В то время как сила тяжести определяется массой, электростатическое притяжение или отталкивание действует на тела, обладающие электрическим зарядом - особой физической характеристикой.