1932 г. стал для ядерной физики знаковым годом. Многие замечательные эксперименты, как прожектором, выхватили из темноты хитросплетения атомного мира. В Колумбийском университете химик Харольд Юри открыл дейтерий, водородный изотоп, который примерно в два раза тяжелее обычного водорода. Нейтрон, обнаруженный Джеймсом Чэдвиком в Кавендишской лаборатории после обработки кропотливых наблюдений, навел на мысль, почему дейтерий по массе в два раза превосходит своего собрата с тем же зарядом. Более тяжелый изотоп обременен лишними нейтронами. Возникли разговоры о том, можно ли, собственно, считать нейтрон отдельной частицей, или же протон и электрон как-то соединяются и дают электрически нейтральный объект.
В научном мире ходило несколько альтернативных гипотез, и только эксперимент мог выбрать какую-либо одну из них. Есть, скажем, бета-распад, когда радиоактивный образец испускает электроны. Этим электронам, думали некоторые, больше неоткуда идти, кроме как из нейтронов, разваливающихся на протоны и электроны. (Сегодня мы знаем: эти превращения происходят за счет слабого взаимодействия, вовлекающего кварки внутри протонов и нейтронов, а также вылетающий электрон и нейтрино).
Еще одну теорию о взаимосвязи нейтрона и протона позволял выдвинуть открытый Карлом Андерсоном позитрон. На фотографиях, отображавших треки в камере Вильсона, ученый из Калтеха[19] обнаружил положительно заряженную компоненту космических лучей (космические частицы, прошедшие через земную атмосферу), причем масса частиц в ней была как у электрона. Сейчас нам известно, что позитрон - это античастица электрона, но в свое время Андерсон задавался вопросом, элементарен ли нейтрон, и если да, то, может быть, протон - это слившиеся воедино нейтрон и позитрон? Чтобы докопаться до истины, требовались точные измерения масс протона и нейтрона. Тогда можно было бы судить, покрывает ли разница в массах массу электрона или позитрона. (Как мы сейчас знаем, нейтрон действительно тяжелее протона, но состоит из кварков, а не из протонов и электронов.)
Пока Лоуренс с аспирантом Мильтоном Стэнли Ливингстоном, приехавшим из Висконсина, в поте лица трудился над укрупнением циклотрона, пальма первенства в погоне за расщеплением литиевого ядра обрела хозяина. Первыми финишную черту на Кавендишском линейном ускорителе преодолели Кокрофт и Уолтон. Второй потом вспоминал, как произошло открытие, как они обстреливали литиевую мишень и, наконец, получили потрясающие результаты. «Утром 14 апреля 1932 г. я проводил обычный осмотр и подготовку аппаратуры. Когда напряжение достигло 400 000 вольт, я решил взглянуть в микроскоп, нацеленный на флуоресцентный экран. Пробираясь ползком на руках и коленях, чтобы избежать удара током, я в конце концов дотянулся до дна ускорительной трубки. Меня обуяла радость, когда я увидел мелкие вспышки света вроде тех сцинтилляций, что дают альфа-частицы. Я читал о них в книгах, но своими глазами никогда раньше не видел»36.
Обнаружив явление, которое очень походило на распад лития, Уолтон позвал в лабораторию Кокрофта, который подтвердил эти подозрения. Потом они сходили за Резерфордом, чтобы тот слазил в камеру и сам посмотрел на сцинтилляции. Они отключили напряжение, и Резерфорд, пригнувшись, протиснулся внутрь. Выйдя оттуда, он сказал: «Эти сцинтилляции сильно напоминают вспышки от альфа-частиц. Я вряд ли их спутаю с чем-либо еще. Они вошли в науку на моей памяти, и с тех пор я такие вспышки наблюдал не раз»37.
На этот раз Резерфорд вдруг попросил Кокрофта и Уолтона держать рот на замке, пока они не проведут новые измерения. В письме своей невесте Фреде Уилсон (на ней он женился в 1934 г) Уолтон писал: «Он [Резерфорд] решил так поступить, потому что боится, что не успеешь и глазом моргнуть, как эта новость облетит все физические лаборатории в мире. Нельзя допустить, чтобы ежедневные газеты запестрели сенсационными заявлениями прежде, чем мы сделаем свое собственное»38.
Кокрофт и Уолтон повторяли эксперимент снова и снова, но уже с камерой Вильсона, регистрирующей следы альфа-частиц. (Камера Вильсона, напомним, - это ящик с пересыщенным паром, проходя сквозь который радиоактивные частицы - альфа и бета - оставляют видимый конденсационный след.) Составив баланс масс до и после удара, физики доказали, что литиевое ядро из трех протонов и четырех нейтронов, сдобренное еще одним протоном, разлеталось на две альфа-частицы, в каждой по паре протонов и нейтронов. Группа из Кембриджа в самом что ни на есть прямом смысле разрезала ядро лития пополам.
Более того, энергия, высвобождаемая в каждом столкновении, в точности равнялась разнице в массах начального и конечного состояния, помноженной на скорость света в квадрате. Эксперимент подтвердил знаменитую формулу Эйнштейна! Убедившись в точности и значимости своих результатов, исследователи опубликовали их в авторитетном журнале «Нэйчур». За свою беспрецедентную работу Кокрофт и Уолтон получили в 1951 г. Нобелевскую премию по физике.