Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном выбросе одного килограмма массы рабочего тела; единица измерений - секунда). 860 секунд. Это вдвое превышало соответствующий показатель кислород-водородных двигателей того времени. Но когда у американцев стало что-то получаться, интерес к пилотируемым полетам уже упал, программа 'Аполлон' была свернута, а в 1973 году окончательно закрыли проект 'NERVA' (так назвали двигатель для пилотируемой экспедиции на Марс). Выиграв лунную гонку, американцы не захотели устраивать марсианскую.
Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы 'гоняли' на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. - примерно 5% стоимости лунной программы.
СССР.
СССР начал с 14 тонн. Такой небольшой ЯРД хорошо подходил на четвертую ступень ракеты 'Протон'. Стенд "Стрела"
Гетерогенные
Первое и главное отличие наших ЯРД от американских - их решено было делать гетерогенными. В гомогенных (однородных) реакторах ядерное топливо и замедлитель распределены в реакторе равномерно. В отечественном ЯРД ТВЭЛы (тепловыделяющие элементы, ядерное топливо) были отделены теплоизоляцией от замедлителя, так что замедлитель работал при гораздо меньших температурах, чем в американских реакторах. Следствие этого - отказ от графита и выбор гидрида циркония в качестве основного замедляющего материала. По нейтронно-физическим свойствам гидрид циркония близок к воде, поэтому, во‑первых, реактор получался втрое компактнее, чем графитовый (а значит, и намного легче), во‑вторых, физические модели двигательного реактора можно было отлаживать гораздо быстрее и дешевле.
Второе, может быть, даже более радикальное отличие - в гидродинамике. Раз уж невозможно было добиться, чтобы ядерное топливо не растрескивалось в реакторе, нужно сделать так, чтоб растрескивание не приводило к изменениям свойств реактора - ни ядерных, ни гидравлических. Была проведена совершенно фантастическая по объему работа, в результате которой выбрали оптимальную форму стержней ядерного топлива - витые стерженьки с сечением в форме четырехлепесткового цветка, размер лепестков - всего пара миллиметров при длине стержня примерно в метр! Такие стержни, упакованные в плотную пачку, образуют систему каналов, свойства которых не изменяются, даже если стержни в процессе работы растрескиваются. Больше того, обломки размером даже в доли миллиметра оказываются заклинены соседними кусками стержня и остаются на месте! В сопло уносятся только совсем микроскопические частицы, максимум в десятки микрон.
Для достижения максимальной температуры водорода на выходе эти стержни содержали переменное по длине количество урана - чем ближе к 'горячему' концу, то есть к соплу, тем меньше было делящегося материала. Назвали это 'физическим профилированием'. Конструкторы жертвовали компактностью реактора ради экономии водорода - тепловые потоки такой величины, как на 'холодном' конце стержня, где перепад температур достигал 25000С, были невозможны на горячем, разница температур между ядерным топливом и водородом уменьшалась в 10 раз - во столько же нужно было снизить теплопоток. На этом удалось выиграть еще 3500С выходной температуры.
По барабану
При такой конструкции реактора регулирующие нейтронный поток органы тоже пришлось вынести наружу. В традиционных реакторах это стержни, размещенные более или менее равномерно по объему. В ЯРД реактор был окружен отражателем нейтронов из бериллия, в который были врезаны барабаны, покрытые с одной стороны поглотителем нейтронов. В зависимости от того, какой стороной барабаны были обращены к активной зоне, они поглощали больше или меньше нейтронов, что и использовалось для управления реактором. К этой схеме пришли в итоге и американцы.
Ядерное топливо для реактора ЯРД - это отдельная, тоже очень объемная работа. Для исследования свойств материалов при таких условиях пришлось построить специальный опытный реактор ИГР, в котором исследуемый ТВЭЛ мог иметь температуру на 10000С больше, чем основной объем активной зоны. В два с половиной раза был в этом месте больше и поток нейтронов. Вот только испытания эти были кратковременными - но об этом позже.
Композитное топливо