Эпоха кварков продолжалась до тех пор, пока Вселенная не достигла зрелого возраста в одну микросекунду. Незадолго до этого (вероятно, около отметки в 0,1 наносекунды) электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие. Примерно в это же время произошло нечто, позволившее отделить материю от антиматерии (ее злобного близнеца), в результате чего большая часть содержащейся во Вселенной антиматерии аннигилировала[25]. Как и почему такое произошло, до сих пор остается загадкой, однако нам следует этому радоваться, поскольку в противном случае мы рисковали бы столкнуться с античастицами и исчезнуть во вспышке гамма-лучей.
Об эпохе кварков и о кварк-глюонной плазме мы знаем гораздо больше, чем об эпохе Великого объединения. Соответствующая теория довольно хорошо разработана и не так сильно отклоняется от стандартной физики элементарных частиц, как ТВО, а эксперименты подтверждают прогнозы, основанные на теории электрослабых взаимодействий. Однако настоящий прорыв состоит в том, что мы способны воссоздать кварк-глюонную плазму в лаборатории. Такие ускорители частиц, как Релятивистский коллайдер тяжелых ионов (RHIC, The Relativistic Heavy Ion Collider) и Большой адронный коллайдер (БАК, или LHC, Large Hadron Collider), сталкивая между собой ядра золота или свинца на чрезвычайно высоких скоростях, способны создавать крошечные огненные шары, настолько горячие и плотные, что они сдавливают все частицы и на мгновение заполняют коллайдер кварк-глюонной плазмой. Наблюдая, как после столкновений обломки «замерзают», превращаясь в обычные адроны, ученые могут изучить свойства этой экзотической материи, а также действие законов физики в таких экстремальных условиях.
Если исследование реликтового излучения позволяет нам увидеть Большой взрыв, то ускорители частиц дают нам попробовать на вкус первичный бульон[26].
Первичный нуклеосинтез
После окончания фазы кварк-глюонной плазмы температура Вселенной понизилась достаточно для того, чтобы в ней начали образовываться некоторые из знакомых нам частиц. Спустя примерно одну десятую долю миллисекунды после возникновения Вселенной в ней сформировались первые строительные блоки обычной материи – протоны и нейтроны, за которыми вскоре последовали электроны. Где-то около двухминутной отметки Вселенная охладилась до комфортной температуры в миллиард градусов Цельсия, что гораздо горячее, чем центр Солнца, но достаточно прохладно для того, чтобы сильное ядерное взаимодействие могло объединить друг с другом только что возникшие протоны и нейтроны. Из них образовалось первое атомное ядро – форма водорода, называемая дейтерием (один протон, связанный с одним нейтроном; технически один протон также может считаться ядром, поскольку он является центром атома водорода). Вскоре такие ядра уже формировались повсюду. Некоторые протоны и нейтроны начали объединяться, образуя ядра гелия, трития, а также лития и бериллия. Этот процесс, называемый первичным нуклеосинтезом, продолжался около получаса до тех пор, пока Вселенная не остыла и не расширилась настолько, что частицы могли удаляться друг от друга на достаточное расстояние и уже не сливаться.
Одним из лучших подтверждений теории Большого взрыва является факт обнаружения тесной связи между нашими наблюдениями за космосом и расчетным количеством элементов, которое мы ожидаем, основываясь на оценках температуры и плотности первичного огненного шара. Это соответствие не совершенное – существует некоторая путаница, связанная с количеством лития, которая может свидетельствовать о какой-то неизвестной пока странности, свойственной ранней Вселенной. Что же касается водорода, дейтерия и гелия, фактическое их количество прекрасно согласуется с тем, которое мы ожидали бы обнаружить, если бы на ранних этапах своего развития весь космос представлял собой одну большую ядерную топку.
Кроме того, факт, что почти весь водород во Вселенной образовался в первые несколько минут после ее возникновения, говорит о том, что большая часть составляющего наш организм вещества в той или иной форме существовала во Вселенной практически на протяжении всей ее истории. Возможно, вы уже слышали, что «мы состоим из звездной пыли» (или «звездного вещества», как выразился Карл Саган), и это абсолютно верно, если судить по массе. Все наиболее тяжелые элементы в нашем теле – кислород, углерод, азот, кальций и т. д. – сформировались позднее, либо в недрах звезд, либо в результате их взрывов. Что касается количества, то самым распространенным элементом в нашем организме является водород (наиболее легкий элемент). Таким образом, мы действительно отчасти состоим из пыли древних поколений звезд. Однако мы также в значительной степени состоим из побочных продуктов Большого взрыва. Так что утверждение Карла Сагана остается в силе: «Мы – способ, которым Космос познает себя».
Поверхность последнего рассеяния