…новые методы окрашивания… В наши дни применяют аналогичные методы, основанные на применении других меток – крупных и тяжелых атомов (осмия, урана, свинца), они хорошо отражают электроны.
…дифракционного барьера. Недавно физики поняли, что дифракционный барьер можно преодолеть с помощью флуоресцентной микроскопии – метода, недоступного для Гольджи (Hell, 2007).
Так объект выглядел бы в оптическом микроскопе. Размытую версию снимка сделал Винфрид Денк, который воспроизвел действие объектива микроскопа с апертурой 1,4 при длине волны 500 нм.
Ее ширина – всего 2 нанометра… Точнее, 2 нанометра – это «краевой радиус кривизны», как гордо заявляют на своих сайтах некоторые производители алмазных ножей. В литературе встречается более скромный показатель – 4 нм (Matzelle., 2003).
Кейт Портер и Джозеф Блюм. Porter, Blum, 1953. Бехтель (Becht el, 2006) рассказывает об истории применения электронных микроскопов в биологии.
…ультрамикротом, вмонтированный в вакуумную камеру электронного микроскопа. Denk, Horstmann, 2004.
…«серийной сканирующей электронной микроскопией основного блока образца»… В более ранний период исследователи применяли трансмиссионную (просвечивающую) электронную микроскопию (ТЭМ) – в этих установках электроны направлялись сквозь срезы ткани. (По сути, это как рассматривание негативной фотопленки на просвет.) В сканирующей электронный микроскопии электроны отражаются от поверхности объекта, чье изображение мы хотим получить.
…имели толщину всего 25 нанометров… Это важный показатель: он устанавливает вертикальный предел разрешения для стопки трехмерных снимков. В двух горизонтальных измерениях у электронной микроскопии разрешение гораздо лучше (всего несколько нанометров или даже меньше). Вертикальное же разрешение куда грубее.
…в конце концов тот достиг показателя в 30 нанометров. Первоначальная конструкция Хэйворта, показанная на рис. 30, называлась не АЛУМ (автоматический ленточный ультрамикротом), а АТЛУМ (автоматический токарный ленточный ультрамикротом). Пластмассовый блок, содержащий в себе образец мозговой ткани, закрепляется на приводе-оси, как у токарного станка. Каждый поворот оси проталкивает блок мимо алмазного резака, и в результате «сбривается» тончайший верхний слой образца. Вначале Хэйворт считал, что такое вращательное движение позволит лучше контролировать толщину срезов. Но затем он вернулся к традиционному линейному движению обычного ультрамикротома: так режут мясо в автоматических установках индийского ресторана.
…для нее не требуется алмазный резак. Нотт (Knott et al., 2008) описывает метод «размалывания с помощью сфокусированного пучка ионов». Бок (Bock, 2011) рассказывает о модификации трансмиссионного (просвечивающего) электронного микроскопа, позволяющей получать изображения более широкой рабочей области, тем самым ускоряя сбор данных.
Глава 9. По следу
…мимо проносятся стенки аксона. Этот молекулярный автомобиль – белок из семейства кинезинов. «Шоссе», по которому он едет, похоже на трубку и называется микротубулой.
Он способен детектировать до миллиарда столкновений частиц в секунду. CMS Collaboration, 2008.
Тогда еще не придумали термин «коннектом»… Когда в 2007 году Бреннер читал вступительную лекцию для моих студентов, которым я преподаю коннектомику, он выразил неудовольствие термином и посоветовал окрестить эту область нейрономией, пошутив, что «нейрономия по отношению к нейрологии – то же самое, что астрономия по сравнению с астрологией».
…немецко-американского биолога Рихарда Гольдшмидта… White et al., 1986.
…срезы толщиной около 50 нм – как раз достаточно, чтобы с уверенностью проследить путь большинства нейронных ветвей. В идеальном случае толщина среза должна равняться величине объемного разрешения для двухмерных изображений, получаемых с помощью электронного микроскопа. Тогда у создаваемого из них трехмерного изображения будет одно и то же объемное разрешение. Но резать так тонко невозможно, так что в третьем измерении картинка неизбежно будет иметь худшее разрешение.