Эти многозначительные явления видны в обычный микроскоп, в котором для получения изображений используется свет, однако их можно увидеть лишь расплывчато. Впрочем, они великолепно обнаруживаются с помощью более совершенных микроскопов, где вместо света применяются электроны. На рис. 14 показан увеличенный в 100 тысяч раз фрагмент мозговой ткани в разрезе. Перед нами два больших круглых сечения нейритов (обозначенных как ax и sp). Подобную картинку можно получить, разрезав спагетти. Стрелка указывает на синапс между нейритами, которые разделены узкой щелью. Здесь видно, что термин «точка контакта» не совсем точен: отростки подходят друг к другу чрезвычайно близко, но всё же
Рис. 14. Синапс конечного мозга
По другую сторону щели располагается молекулярная аппаратура для отправки и приема сигналов. Одну сторону щели усеивает множество крошечных мешочков, именуемых везикулами: на снимке они показаны в виде кружков. В везикулах хранятся молекулы нейротрансмиттера, готовые к использованию. На другой стороне имеется мембрана с темным пухом, именуемым
Каким образом вся эта механика передает химическое послание? Отправитель сбрасывает в межнейронную щель содержимое одной или нескольких везикул. Молекулы нейротрансмиттера распространяются по солевому раствору, который в этой щели содержится. Их присутствие «ощущает» получатель – когда они встречаются с его молекулами-рецепторами, находящимися в ПСУ.
Рис. 15. Шариковые модели нейротрансмиттеров: глутамат (
В качестве нейротрансмиттеров используются многие типы молекул. Каждая, как это принято у молекул, состоит из атомов, связанных друг с другом. (Примеры см. на рис. 15; в этих моделях из шариков и палочек каждый шарик представляет атом, а каждая палочка – химическую связь.) Можно увидеть, что молекулы-нейротрансмиттеры каждого типа обладают своей характерной формой, которая обусловлена определенным расположением атомов.
Этот факт скоро нам пригодится.
Слева – глутамат, наиболее распространенная молекула-нейротрансмиттер. Больше всего среднему человеку известен глутамат натрия, использующийся как усилитель вкуса в китайской и других азиатских кухнях. Мало кто знает, что глутамат играет также важнейшую роль в функционировании мозга. Справа – гамма-аминомасляная кислота (ГАМК), она занимает среди нейротрансмиттеров второе место по распространенности.
Пока открыто свыше сотни различных нейротрансмиттеров. С виду этот список кажется длинным. Вы когда-нибудь испытывали растерянность в винном магазине, где полки забиты несметным количеством сортов пива и марок вина? Если вы человек привычки, то, возможно, всякий раз покупаете одну-две марки и подаете их друзьям на каждой вечеринке, которую устраиваете. Сходным образом поступают и нейроны. За небольшими исключениями, конкретный нейрон испускает во все свои синапсы лишь небольшой набор нейротрансмиттеров, а часто вообще один-единственный. (Мы говорим сейчас о синапсах, которыми нейрон налаживает связи с другими, а не о тех, с помощью которых
Обратимся теперь к молекулам-рецепторам. Они гораздо крупнее и сложнее, чем нейротрансмиттеры. Часть каждой такой молекулы торчит над поверхностью нейрона, словно голова и руки ребенка, плавающего по воде на надувном круге. Эта выступающая часть рецептора как раз и улавливает присутствие нейротрансмиттера.
Глутаматовый рецептор чувствует глутамат, но игнорирует ГАМК и другие нейротрансмиттеры. Точно так же и ГАМК-рецептор ощущает лишь гамма-аминомасляную кислоту, а на молекулы других нейротрансмиттеров не обращает внимания. В чем причина такой избирательности? Сравним рецептор с замком, а нейротрансмиттер – с ключом. Как мы уже видели, молекула нейротрансмиттеров каждого типа имеет определенную форму, словно узор из выступов и бороздок на ключе. У каждого типа рецепторов имеется так называемая зона связи, обладающая характерной формой, словно внутренние углубления и выступы в замочной скважине. Если форма нейротрансмиттера соответствует форме зоны связи, рецептор активируется, подобно тому как ключ, подходящий к замку, отпирает дверь.