Этот оптический обман может показаться каким-то чересчур искусственно выстроенным, вряд ли он пригоден для описания самых обычных ситуаций зрительного восприятия. Так или нет? Как выясняется, даже для образов реальных объектов контекст оказывается весьма важен, когда речь идет о точном восприятии границ. Первое изображение на рис. 36 – увеличенный снимок группы нейронов, сделанный при помощи электронного микроскопа. Особых признаков каких-то границ здесь не видно. Дальнейшие изображения характеризуются большим числом пикселей, и граница в центре становится очевидной. Обнаружение этой границы позволяет корректно интерпретировать снимок (предпоследняя картинка). Если же не заметить эту границу, можно ошибочно «смешать» два нейрита (последняя картинка). Такие ошибки как раз и называются «погрешностью смешения». Так бывает, когда ребенок замалевывает одним и тем же карандашом две соседние области на рисунке в книжке-раскраске. В свою очередь, «погрешность расщепления» (на иллюстрации не показана) – это как использование двух карандашей разного цвета для закрашивания одной области.
По счастью, такая путаница все-таки происходит сравнительно редко. Та, что нашла отражение на иллюстрации, произошла из-за того, что красителю не удалось проникнуть в один из участков биологической ткани, которую изучали под микроскопом. Однако для основной части рисунка, даже при большом увеличении, вполне очевидно, где идет граница, а где никакой границы нет. На этих легких участках компьютеры способны точно определять границы, однако на трудных они спотыкаются, поскольку хуже, чем люди, умеют осваивать информацию о контексте.
Детектирование границ – не единственная визуальная задача, которую компьютерам следует научиться решать эффективнее, если мы хотим с их помощью находить коннектомы. Еще одна задача включает в себя распознавание. Многие современные цифровые фотоаппараты достаточно смышлены, чтобы найти лица в области съемки и сфокусироваться на них. Но иногда они ошибочно фокусируются на каком-то постороннем предмете, расположенном на заднем плане, а значит, пока не могут распознавать лица так же хорошо, как это делают люди. Желательно, чтобы компьютеры, которые применяются в коннектомике, выполняли похожую задачу, притом безупречно: они должны, просмотрев набор снимков, найти на них все синапсы.
Почему же пока не удается создать компьютеры, видящие так же хорошо, как люди? По-моему, причина в том, что очень уж мы хорошо видим. Первые исследователи ИИ сосредоточились на том, чтобы наделить электронные машины способностями, которые требуют от человека немалых усилий. В частности, их пытались научить играть в шахматы или доказывать математических теоремы. Как ни удивительно, оказалось, что электронному устройству не так-то сложно освоить такие вещи: в 1997 году суперкомпьютер
Иногда люди, умеющие что-то делать лучше остальных, оказываются худшими учителями. Сами они выполняют задание бессознательно и бездумно, а если их спросить, как они это проделывают, они лишь недоуменно покачают головой и не смогут ничего объяснить. Все мы – виртуозы зрения. Мы с рождения умеем видеть и не понимаем, как кто-то (или что-то) может этого не уметь. Поэтому из нас получаются такие паршивые учителя зрения. К счастью, нам никогда и не приходится никому преподавать этот предмет. За исключением того случая, когда наши ученики – компьютеры.
В последние годы некоторые исследователи вообще решили оставить попытку обучить машину зрению. Пускай она учится сама. Соберите огромное количество примеров визуальных задач, выполняемых людьми, и запрограммируйте компьютер так, чтобы он имитировал эти примеры. Если ему это удастся, значит, он «научится» выполнять задачу безо всяких прямых инструкций со стороны человека. Этот метод называется машинным обучением и представляет собой важную область компьютерной науки. Именно благодаря ему появились цифровые фотоаппараты, умеющие автоматически фокусироваться на лицах. Ему мы обязаны и многими другими успехами ИИ.