При повышении температуры растет скорость различных видов движения частиц. Отсюда число микросостояний частиц, а соответственно и термодинамическая вероятность
Абсолютные значения энтропии многих веществ являются табличными и приведены в справочниках. Например:
Н2
0(ж) = 70,8; Н20(г) = 188,7; СО(г) = 197,54;СН4
(r) = 186,19; Н2(г) = 130,58; НС1(г) = 186,69; НСl(р) = 56,5;СН3
0Н(ж) = 126,8; Са(к) = 41,4; Са(ОН)2(к) = 83,4; С(алмаз) = 2,38;С(графит) = 5,74 и т. д.
Изменение энтропии системы в результате химической реакции (Δ
СН4
+Н20(г) = С0 + 3Н2– здесь Δ197,54 = 3 · 130,58 – 188,19 – 188,7 = 214,39 Дж/моль · К.
В результате реакции энтропия возросла (A
Информационная энтропия. Энтропия в биологии
Информационная энтропия служит мерой неопределенности сообщений. Сообщения описываются множеством величин
при условии:
Значение
Общая энтропия нескольких сообщений равна сумме энтропий отдельных сообщений (свойство аддитивности).
Американский математик Клод Шеннон, один из создателей математической теории информации, использовал понятие энтропии для определения критической скорости передачи информации и при создании «помехоустойчивых кодов». Такой подход (использование из статистической термодинамики вероятностной функции энтропии) оказался плодотворными в других направлениях естествознания.
Понятие энтропии, как показал впервые Э. Шредингер (1944 г.), а затем Л. Бриллюэн и др., существенно и для понимания многих явлений жизни и даже деятельности человека.
Теперь ясно, что с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельно возможной упорядоченности, которому соответствует единственно возможное состояние элементов системы.
Живой организм с точки зрения протекающих в нем физико-химических процессов можно рассматривать как сложную открытую систему, находящуюся в неравновесном, нестационарном состоянии. Для живых организмов характерна сбалансированность процессов обмена, ведущих к уменьшению энтропии. Конечно, с помощью энтропии нельзя охарактеризовать жизнедеятельность в целом, так как жизнь не сводится к простой совокупности физико-химических процессов. Ей свойственны другие сложные процессы саморегуляции.
Вопросы для самопроверки
1. Сформулируйте законы движения Ньютона.
2. Перечислите основные законы сохранения.
3. Назовите общие условия справедливости законов сохранения.
4. Объясните существо принципа симметрии и связь этого принципа с законами сохранения.
5. Сформулируйте принцип дополнительности и принцип неопределенности Гейзенберга.
6. В чем состоит «крушение» лапласовского детерминизма?
7. Как формулируются постулаты Эйнштейна в СТО?
8. Назовите и объясните релятивистские эффекты.
9. В чем состоит суть ОТО?
10. Почему невозможен вечный двигатель первого рода?
11. Объясните понятие кругового процесса в термодинамике и идеальный цикл Карно.
12. Объясните понятие энтропии как функцию состояния системы.
13. Сформулируйте второе начало термодинамики.
14. Объясните суть понятия «неравновесная термодинамика».
15. Как качественно определяется изменение энтропии при химических реакциях?
Глава 4
ЕСТЕСТВЕННОНАУЧНЫЕ ЗНАНИЯ О ВЕЩЕСТВЕ