Дискуссия ограничивалась двухмерным континуумом. Предмет спора в общей теории относительности еще более сложен, так как там — не двухмерный, а четырехмерный пространственно-временнóй континуум. Но идеи те же, что и набросанные здесь для случая двухмерного пространства. В общей теории относительности мы не можем применять механических построений с помощью сети параллельно-перпендикулярных стержней и синхронизированных часов, как в специальной теории относительности. В произвольной системе координат мы не можем определить точку и момент времени, в которые произошло событие, используя твердые стержни и ритмичные и синхронизированные часы, как в инерциальной системе координат специальной теории относительности. Мы по-прежнему можем установить порядок событий с помощью наших неевклидовых стержней и часов с различным ритмом. Но действительные измерения, требующие твердых стержней и совершенных ритмических и синхронизированных часов, могут быть выполнены только в локальной инерциальной системе. Для такой системы справедлива вся специальная теория относительности. Но наша «хорошая» система координат только локальна, ее инерциальный характер ограничен в пространстве и времени. Даже в нашей произвольной системе координат мы можем предвидеть результаты измерений, сделанные в локальной инерциальной системе. Но для этого мы должны знать геометрический характер нашего пространственно-временнóго континуума.
Наши идеализированные эксперименты показывают только общий характер новой релятивистской физики. Эти эксперименты показывают нам, что основной проблемой является проблема тяготения. Они показывают нам также, что общая теория относительности приводит к дальнейшему обобщению понятий времени и пространства.
Общая теория относительности пытается сформулировать физические законы для всех систем координат. Фундаментальная проблема теории относительности есть проблема тяготения. Теория относительности сделала первое со времени Ньютона серьезное усилие заново сформулировать закон тяготения. Действительно ли это необходимо? Мы уже узнали о достижениях теории Ньютона, об огромном развитии астрономии, основанном на его законе тяготения. Ньютонов закон еще остается основой всех астрономических расчетов. Но мы узнали также о некоторых возражениях против старой теории. Ньютонов закон справедлив только в инерциальной системе координат классической физики, в системе координат, определенной, как мы помним, условием, что в ней должны быть справедливы законы механики. Сила, действующая между двумя массами, зависит от расстояния между ними. Связь между силой и расстоянием, как мы знаем, инвариантна относительно классических преобразований. Но этот закон не соответствует строению специальной теории относительности. Расстояние не инвариантно по отношению к преобразованиям Лоренца. Мы могли бы стараться, что мы и делали успешно в отношении законов движения, обобщить закон тяготения, сделать его соответствующим специальной теории относительности или, другими словами, сформулировать его так, чтобы он был инвариантным по отношению к преобразованиям Лоренца, а не по отношению к классическим преобразованиям. Но ньютонов закон тяготения упрямо сопротивляется всем нашим усилиям упростить и приспособить его к схеме специальной теории относительности. Даже если бы это и удалось нам, был бы необходим еще дальнейший шаг, шаг от инерциальной системы координат специальной теории относительности к произвольной системе общей теории относительности. С другой стороны, идеализированный эксперимент с падающим лифтом ясно показывает, что нет шансов сформулировать общую теорию относительности без разрешения проблемы тяготения. Из наших рассуждений видно, почему решение проблемы тяготения различно в классической физике и в общей теории относительности.
Мы постарались показать путь, ведущий нас к общей теории относительности, и основания, вынуждающие нас еще раз изменить наши старые взгляды. Не входя в формальную структуру теории, мы охарактеризуем некоторые черты новой теории тяготения для сравнения со старой. Не слишком трудно будет понять природу различий обеих теорий после всего, что было ранее сказано.
1. Гравитационные уравнения общей теории относительности могут быть применены к любой системе координат. Выбрать какую-либо особую систему координат в специальном случае — дело лишь удобства. Теоретически допустимы все системы координат. Игнорируя тяготение, мы автоматически возвращаемся к инерциальной системе специальной теории относительности.