Можно отрицать философию, религию, мистику, и это признается нормальным. Но с подозрением посмотрят на человека, который выразит сомнение в справедливости закона всемирного тяготения. В этом смысле можно сказать, что законы физики лежат в основании научного постижения действительности.
Два обстоятельства мешают понять современную физику: 1) применение сложнейшего математического аппарата, который надо предварительно изучить (А. Эйнштейн сделал попытку преодолеть эту трудность, написав учебник, в котором нет ни одной формулы); 2) невозможность создать наглядную модель современных физических представлений (искривленное пространство; частицу, одновременно являющуюся волной, и т. д.).
Прогресс физики (и науки в целом) связан с постепенным отказом от непосредственной наглядности. Как-будто такой вывод должен противоречить тому, что современная наука, и физика прежде всего, основывается на эксперименте, т. е. эмпирическом опыте, который проходит при контролируемых человеком условиях и может быть воспроизведен в любое время любое число раз. Но дело в том, что некоторые стороны реальности незаметны для поверхностного наблюдения и наглядность может ввести в заблуждение. Механика Аристотеля покоилась на принципе: «Движущееся тело останавливается, если сила прекращает свое действие на него». Он казался соответствующим реальности просто потому, что не замечалось, что причиной остановки тела является трение. Для того, чтобы сделать правильный вывод, потребовался эксперимент, который был не реальным, невозможным в данном случае, а идеальным.
Такой эксперимент провел великий итальянский ученый Г. Галилей, автор «Диалога о двух главнейших системах мира, птолемеевой и коперниковой» (1632). Для того, чтобы данный мысленный эксперимент стал возможным, потребовалось представление об идеально гладком теле и идеально гладкой поверхности, исключающей трение. Эксперимент Галилея, позволивший сделать вывод, что, если ничто не будет влиять на движение тела, оно сможет продолжаться бесконечно долго, стал основой классической механики И. Ньютона (вспомним три закона движения из школьной программы физики). В 1686 г. Ньютон предоставил Лондонскому королевскому обществу свои «Математические начала натуральной философии», в которых сформулировал понятия массы, инерции, ускорения, основные законы движения и закон всемирного тяготения. Так, благодаря мысленным экспериментам стала возможной новая механистическая картина мира.
Возможно, на знаменитые мысленные эксперименты Галилея подвигло создание гелиоцентрической системы мира выдающимся польским ученым Н. Коперником (1473–1543), ставшее еще одним примером отказа от непосредственной наглядности. Главный труд Коперника «Об обращении небесных миров» подвел итог его наблюдениям и размышлениям над этими вопросами в течение более 30 лет. Датский астроном Т. Браге (1546–1601) ради спасения наглядности выдвинул в 1588 г. гипотезу, согласно которой вокруг Солнца вращаются все планеты, за исключением Земли, последняя неподвижна и вокруг нее обращаются Солнце с планетами и Луна. И только И. Кеплер (1571–1630), установив (первые два в 1609, третий — в 1618 г.) три закона планетарных движений, названных его именем, окончательно подтвердил справедливость учения Коперника.
Итак, прогресс науки Нового времени определили идеализированные представления, порывающие с непосредственной реальностью. Однако физика XX в. заставляет отказаться не только от непосредственной наглядности, но и от наглядности как таковой. Это препятствует представлению физической реальности, но позволяет лучше осознать справедливость слов Эйнштейна: «Физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения»[51]
.Отказ от наглядности научных представлений является неизбежной платой за переход к исследованию уровней реальности, не соответствующих эволюционно выработанным механизмам человеческого восприятия.
Еще в классической механике был известен принцип относительности Г. Галилея: «Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой»[52]
. Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции, гласящему: «Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущих сил»[53].