Читаем Концептуальное мышление в разрешении сложных и запутанных проблем полностью

B – знак булеана (множество, образованное на всех возможных комбинациях элементов исходного множества).

При использовании этих элементов вместе с другими математическими и логическими символами возникает возможность выстраивать формально строго любые суждения.

Например, выражение означает «для всех x:, принадлежащих множеству X, а также для всех у, принадлежащих множеству Y, х никогда не равен y». Скажем так – это аксиома безнадежности. Если теперь под Xи Y понимать объемы некоторых понятий (например, X– это «мнения подчиненных», а У– это «мнения менеджера»), то х и у – это некоторые элементы этих объемов (конкретные мнения тех и другого), а саму аксиому можно (образно, но точно) интерпретировать так: «мнения подчиненных и мнения менеджера при любых условиях не совпадают».

Любой из нас теперь понимает, что с помощью этих и других формализмов, образующих язык и операциональное поле исчисления высказываний, можно не только выстраивать суждения, но и выводить из них непротиворечивые следствия. И что особенно примечательно – при этом имея возможность самым наглядным образом проверять их. Вот это последнее утверждение чрезвычайно важно для нашего предмета.

Вот пример наглядности. Пусть под X мы понимаем множество сотрудников какого-то отдела компании. Пусть их будет четверо. То есть само множество состоит из четырех элементов Х = (1,2,3,4). Здесь 1, 2,3,4 – не числа, а обозначения конкретных сотрудников. Теперь попробуем увидеть самым наглядным образом все возможные комбинации групп сотрудников, которые возникают, если мы решим, что они должны объединяться по правилу В(Х). В этом случае все возможное разнообразие групп сотрудников будет следующим (1), (2), (3), (4), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (1,2,3), (1,2,4), (1,3,4), (2,3,4), (1,2,3,4), (). Я все учел? Нет только таких групп, где каждый сотрудник образует группу сам с собой, типа (1,1) – они бессмысленны. Просматривая непосредственным образом все эти группы и группки (так я называю группы, состоящие из одного человека, типа (2)), можно выбирать те, которые нам нужны/не нужны.

Ключевым обстоятельством, связывающим концептуальное мышление с исчислением высказываний, надо признать требование совершать прямые непротиворечивые содержательные рассуждения о мыслимых предметах в виде мысленных экспериментов над наглядно представимыми объектами. Вот эти два требования «непротиворечивости» и «наглядности» и есть условия, опираясь на которые природа концептуального мышления «сделала» выбор своего логического инструментария. Оцените ситуацию: непротиворечивый в решениях менеджер, рассуждающий наглядным образом…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже