До Гёделя все полагали, что если в основаниях математики обнаружится какой-нибудь изъян, разлом или провал, его можно будет залатать одной или двумя новыми аксиомами, а не то, скажем, новым доказательством или еще чем. А Гёдель доказал, что не важно, сколько будешь латать прорехи; используя его прием кодировки, всегда можно создать (или сделать вероятными) внутренне противоречивые, парадоксальные утверждения. Не совсем абсурдные, как «1 + 1 = 3», а скорее вроде «если 1 + 1 = 2, тогда 1 + 1 /= 2».
И это был, по сути, опять парадокс «Лжец». А тот факт, что, пользуясь одной лишь математикой, можно создавать такого рода парадоксы, в которых что-то истинно и в то же время ложно, означал, что математика в самой своей основе… ну, не то чтобы прямо-таки противоречива, но несовершенна. Если о подобных вещах слишком много думать, голова заболит. Как бы то ни было, бедняге Гильберту пришлось смириться с тем, что храм математики не выйдет чистенько и аккуратненько подмести. Вообразите только. Вы ставите перед людьми задачу, надеясь на утешительный результат, а он обманывает все ваши ожидания. Да и Гёдель — бедняга. Убедив самого себя, что у него порок сердца, он стал параноиком и думал, будто вся его еда отравлена. Кормить его мог единственный человек, которому он доверял, — его жена Адель. Когда она попала в больницу, он в буквальном смысле умер от голода.
Дедушка живо интересуется, как у меня продвигаются дела с этой книгой; не знаю, почему. Я хочу знать одно: что было дальше? Потерпела ли математика крах? А если нет, то почему нет? Не ошибся ли Гёдель?
Бабушка улыбается, когда я вываливаю на нее эти вопросы однажды вечером в ее кабинете.
— Если б она потерпела крах, как бы я могла ею до сих пор заниматься?
— Но…
— Гёдель не разрушил математику. Он вдохнул в нее новую жизнь. Гёдель всех вдохновил, особенно Тьюринга. Кантор доказал, что за бесконечностью всегда есть другая бесконечность. Гёдель доказал, что к математике всегда можно добавлять новые аксиомы… и никогда не быть уверенным, что некое заведомо истинное утверждение доказуемо. Тьюринг доказал, что существуют компьютерные программы, которые могут попросту никогда не закончиться. Так волнующе об этом думать.
— Могут никогда не закончиться? — говорю я.
— Точно. — Она улыбается. — Скажем, ты ставишь перед компьютером по-настоящему трудную задачу. У него может уйти миллион лет на поиски ответа, но он его
Она поворачивается к компьютеру и запускает одну из своих самодельных программ.
— Думаю, ты готова услышать следующую часть истории.
Часть третья
За край познания — шаг робкий, И сразу чудится порой, Что жизнь — две запертых коробки, И в каждой — ключик от второй.
Глава двадцать первая
Сон: я заблудилась в лесу, где нет никого, кроме меня. Я слышу странные перешептывания, за которыми пытаюсь следовать, хотя знаю, что это бессмысленно. Вскоре я набредаю на коттедж: снаружи — дикие розы, стены — зеленые от плюща. Я думаю:
Войдя в гостиную, вижу, что она обставлена как библиотека. Вдоль стен — DVD, видеокассеты, книги. Мне вспоминается какой-то разговор: я заявляла, что у меня нет таких коллекций и что я ничьими не интересуюсь. Однако эта меня впечатляет. Все фильмы — мои любимые, или моих стариков. Математические фильмы, военные фильмы, дешифровочные фильмы и фильмы, от которых плачешь, потому что мир изменился и люди больше не помогают друг другу. Я смотрю на одну из полок и понимаю, что вижу дедушкину коллекцию книг. Книги о Гёделе, книги об астрологии, цветах и алфавитах. Биография человека, восстановившего древний язык по жалким обрывкам, и дедушкина самая зачитанная «кодовая» книга: «Секретно и срочно: история о кодах и шифрах» Флетчера Прэтта. В этой монографии, опубликованной в 1939 году, есть дедушкина любимая таблица частот букв в английском языке.