Читаем Кошки и гены полностью

Более наглядное представление о расщеплении дает так называемая решетка Пеннета. Это весьма полезное изобретение. Я рекомендую вам использовать его при решении любых генетических задач.

Запишем по строкам и столбцам все возможные гаметы. Пересечение строк со столбцами даст нам генотипы зигот, которые возникают при объединении гамет.

В потомстве от скрещивания двух гетерозигот половина потомков — опять гетерозиготы и по четверти потомков принадлежит к одному или другому гомозиготному классу. Расщепление по генотипам во втором поколении будет

1 АА : 2Аа : 1пп

Второй закон Менделя называют законом расщепления.

Второй закон Менделя: закон расщепления.

В конечном счете важно даже не количество особей того или другого класса. Важно то, что при скрещивании одинаковых по фенотипу особей в потомстве обнаруживается особь, не похожая ни на одного из родителей. От серых кота и кошки рождается черный потомок.

Вернее, он может родиться. А может и не родиться. Второй закон Менделя позволяет предсказать вероятность его рождения. Она равна 25%. Но это не значит, что при скрещивании двух гетерозигот в потомстве из четырех котят один обязательно должен быть черным. Вспомните, в первой главе мы говорили: все вероятностные предсказания сбываются при большом числе испытаний. Из 1000 котят от скрещиваний такого типа около 250 будут гомозиготами по рецессивному аллелю. Но, взяв наугад 10 потомков, мы можем не обнаружить ни одного черного котенка.

Расщепление по фенотипам зависит от правил доминирования. В рассматриваемом нами примере А доминирует над а, и поэтому серыми будут как АА, гак и Аа. Следовательно, в данном случае расщепление по фенотипу будет в отношении 3 серых к 1 черному. Налицо несовпадение расщеплений по генотипу и по фенотипу.

Мы точно знаем, что все черные кошки имеют генотип аа. В то же время часть серых кошек имеет генотип АА, а другая часть Аа. По фенотипу они не отличаются. И те, и другие серые. Можно ли установить генотип каждой из них?

Студенты, воодушевленные научно-популярными книжками по молекулярной биологии, отвечают на этот вопрос утвердительно.

— Конечно, - говорят они. — Нужно выделить из кошки тот фрагмент ДНК, который определяет окраску шерсти, и расшифровать в нем последовательность нуклеотидов. Тогда мы узнаем, которая из серых кошек имеет два одинаковых аллеля, а которая — два разных. Так мы отличим гомозигот от гетерозигот.

Сейчас, когда мы знаем последовательность нуклеотидов в генах контролирующих окраску мы действительно можем это сделать. Но на самом деле нам нет нужды затевать всю эту кухню с выделением и секвенированием генов для того только, чтобы отличить гомозиготу АА от гетерозиготы Аа.

У генетика в руках есть гораздо более простой метод анализа генов — скрещивание. Для того чтобы определить генотипы упомянутых серых кошек, из второго поколения или любой кошки, хоть бы и пойманной на улице, — для этого нужно поставить анализирующее скрещивание. Нужно скрестить кошку, генотип которой вызывает у нас сомнение, с гомозиготой по тому аллелю, в скрытом носительстве которого мы ее подозреваем. В данном примере мы должны поставить скрещивание с черной кошкой. Ее генотип нам точно известен, Если она черная, то генотип ее — аа.

Если взятая нами в анализ особь — гомозигота АА, то результаты скрещивания будут теми же, что были при скрещивании двух чистых пород — все потомство будет единообразным — серым, согласно первому закону Менделя.

Если же эта особь гетерозиготна, то она будет давать два типа гамет: А и о в равном соотношении. Тогда половина потомков от скрещивания такой особи с рецессивной гомозиготой аа будут

гетерозиготы Аа — серые, а другая половина — гомозиготы аа — черные.

Анализирующее скрещивание — это очень эффективный метод выявления скрытых рецессивных аллелей. Но пока мы его не провели, у нас нет ясности, какой генотип скрывается за доминантным фенотипом, поэтому серых котов из второго поколения, равно как и любых других серых котов, генотип которых не проанализирован, мы будем обозначать А.. Мы знаем, что один из аллелей у такого кота — А, но не знаем, какой второй аллель — А или а — и вместо него ставим прочерк.

Доминирование — достаточно широко распространенное явление. Однако, как мы уже говорили, для некоторых аллелей характерно не полное, а промежуточное доминирование. Признак может быть выражен сильнее у гомозиготы по доминантному аллелю, чем у гетерозиготы. Так, если мы скрестим особей с большой белой пятнистостью SS с кошками, имеющими сплошную окраску ss, мы получим потомков первого поколения Ss со средним размером белого пятна. Если их скрестить друг с другом, получается одна четверть потомков с большой пегостью SS, половина со средней пегостью Ss и четверть со сплошной окраской ss. Вы видите, что в случае неполного, промежуточного доминирования расщепление по генотипам 1:2:1 совпадает с расщеплением по фенотипам.

Перейти на страницу:

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука