Теоретически возможность существования гравитационных волн была предсказана много лет назад. Однако экспериментальное их обнаружение в лабораторных экспериментах оказалось невероятно трудной задачей. По сравнению с другими видами излучения гравитационные волны исключительно слабы. Так, электромагнитное излучение (скажем, радиоволны) испускается при колебаниях электрических зарядов в триллион триллионов (10
36) раз сильнее, чем при тех же самых колебаниях тех же зарядов испускаются гравитационные волны. Дело здесь прежде всего в том, что электромагнитные силы несравненно мощнее гравитационных. Поэтому электромагнитное излучение легко регистрировать с помощью множества устройств, включая человеческий глаз, фотопленку или радиоприемник. Изобретение же прибора, который реагировал бы на гравитационное излучение, оказалось для физиков-экспериментаторов задачей огромной трудности.Реакция человеческого глаза или фотопленки на электромагнитное излучение определённой длины волны обусловлена тем, что переменные электрическое и магнитное поля этого излучения приводят в движение заряженные частицы. Когда в глаз человека попадает свет, в клетках сетчатки глаза электроны атомов начинают колебаться и возникающий в результате этого слабый электрический ток в конечном счете через множество промежуточных ступеней регистрируется мозгом. Что касается фотопленки, то при движении электронов в атомах покрывающей её эмульсии происходят химические реакции. И вообще электромагнитное излучение приводит в движение заряженные частицы, так что его можно обнаружить именно по движению этих частиц.
РИС. 15.1.
Гравитационные волны также приводят в движение частицы. Однако движение, вызванное гравитационными волнами, имеет совершенно иной характер, чем вызванное электромагнитными волнами. Чтобы сравнить эффекты этих двух типов волн, представим себе кольцо, образованное электронами, свободно взвешенными в пространстве. Если через это кольцо проходит электромагнитная волна, то все электроны в унисон начнут колебаться взад и вперёд. Если же через кольцо проходит гравитационная волна, то частицы приходят в движение относительно друг друга. Как видно из рис. 15.2, при этом искажается форма кольца - оно сплющивается или вытягивается.
РИС. 15.2.
РИС. 15.3.
Такое
Первая попытка построить подобную гравитационную антенну была предпринята Джозефом Вебером из Мэрилендского университета (США) (рис. 15.4). Ещё в 1950-е годы Вебер решил попробовать поработать с большим алюминиевым цилиндром. Понимая, что речь идет о необходимости регистрировать невероятно малые изменения формы цилиндра, исследователь наклеил на поверхность цилиндра пьезоэлектрические датчики деформации. Пьезоэлектрические кристаллы обладают чрезвычайно высокой чувствительностью и дают заметный электрический ток даже при воздействии ничтожных давлений или натяжений. Полученные электрические сигналы усиливались и регистрировались электронной аппаратурой в лаборатории Вебера.
РИС. 15.4.