Читаем Космические рубежи теории относительности полностью

На основе квантовомеханического подхода оказалось возможным понять много явлений, совершенно необъяснимых с точки зрения старой модели бильярдных шаров. Хорошим примером может служить действие транзисторов и диодов в электронных устройствах. В некоторых типах диодов электрическое поле создаёт потенциальный барьер, настолько сильный, что он должен был бы воспрепятствовать электронам переходить с одной стороны диода на другую. В этом смысле потенциальный барьер можно представлять себе как «стенку». В прежней модели электрона (бильярдный шар) он должен был бы попросту отскочить от такой стенки, как это показано на рис. 17.6, вверху. Однако если представлять себе электрон как волновой пакет, то существует определённая вероятность того, что он проникнет за потенциальный барьер. Такое явление называют туннельным эффектом, оно схематически изображено на рис. 17.6, внизу.

РИС. 17.6. Туннельный эффект. С классической точки зрения электрон никогда не может преодолеть высокий потенциальный барьер. Однако с точки зрения квантовой механики субатомные частицы способны просочиться с одной стороны барьера на другую.

Окружающее чёрную дыру гравитационное поле можно представить себе как потенциальный барьер, запрещающий в классической теории чему бы то ни было выходить из дыры. В том случае, когда чёрная дыра очень массивна, её сильное гравитационное поле простирается на такое большое расстояние, что потенциальный барьер оказывается очень толстым. Вероятность того, что частица сможет благодаря туннельному эффекту пройти сквозь толстый потенциальный барьер, практически равна нулю (см. рис. 17.7, вверху). Но в маленькой первичной чёрной дыре гравитационное поле оказывается сильным лишь в очень небольшой области. Это означает, что окружающий маленькую чёрную дыру потенциальный барьер является очень тонким, в результате чего существует заметная вероятность того, что частицы смогут пройти сквозь него в окружающую Вселенную (рис. 17.7, внизу). Итак, частицы и античастицы, рожденные внутри горизонта событий, могут пройти сквозь тонкий потенциальный барьер маленькой чёрной дыры и выйти из неё! Это замечательное открытие, что вещество способно выходить из чёрной дыры, означает, что чёрные дыры ведут себя как белые дыры. Развивая эту мысль, Хоукинг смог в 1975 г. доказать, что маленькие чёрные дыры совершенно неотличимы от маленьких белых дыр!

РИС. 17.7. Выход из чёрной дыры благодаря туннельному эффекту. Гравитационное поле массивной чёрной дыры простирается на столь далекие расстояния, что создаваемый им потенциальный барьер оказывается очень толстым. Поэтому частицам почти невозможно пройти сквозь него в окружающую Вселенную. Если же чёрная дыра мала, то её потенциальный барьер достаточно тонок, и вещество может вырваться из дыры.

Тот факт, что чёрные дыры испускают вещество и излучение, означает, что чёрной дыре на основе законов термодинамики можно приписать температуру. Температура чёрной дыры - это непосредственная мера того, с какой скоростью дыра испускает частицы и излучение. Так как потенциальный барьер массивных чёрных дыр толст, то вероятность прохода любого объекта сквозь него близка к нулю. Значит, температура массивной чёрной дыры должна быть близка к абсолютному нулю. Например, температура чёрной дыры, возникающей при смерти массивной звезды, будет менее 1/10000000 градуса выше абсолютного нуля. Поэтому квантовомеханические эффекты, предсказанные Хоукингом, совершенно несущественны для массивных чёрных дыр. На рис. 17.8 приведен график, связывающий температуру и массу больших чёрных дыр. Те чёрные дыры, масса которых превышает массу Земли, обладают температурой менее 1/10 градуса выше абсолютного нуля.

РИС. 17.8. Большие чёрные дыры являются холодными. Так как частицам почти невозможно пройти сквозь толстый потенциальный барьер, окружающий большие чёрные дыры, температура последних является очень низкой.

Большие чёрные дыры являются холодными, так как их окружает толстый потенциальный барьер, практически не дающий ничему из них уходить сквозь горизонт событий. Маленькие чёрные дыры (разумеется, если они вообще существуют) должны обладать тонкими потенциальными барьерами. Согласно квантовой механике, частицы и излучение могут выходить из этих дыр, а значит, они должны обладать заметной температурой. На рис. 17.9 показан график, связывающий температуру и массу маленьких чёрных дыр. Как видно, чёрная дыра с массой порядка массы среднего астероида должна обладать температурой около 100000 К.

Перейти на страницу:

Похожие книги