Читаем Космические рубежи теории относительности полностью

РИС. 5.10. Искривлённое пространство. Диаграмма вложения наглядно изображает кривизну пространства вблизи Солнца. Штриховкой показано местоположение Солнца. (По Мизнеру, Торну и Уилеру.)

РИС. 5.11. Отклонение света звёзд. Отклонение световых лучей в общей теории относительности можно без труда понять, исходя из диаграммы вложения. Мировые линии световых лучей - геодезические (т.е. кратчайшие возможные пути) на гиперповерхности Так как эта поверхность искривлена, то искривлены и пути. (По Мизнеру, Торну и Уилеру.)

Если диаграммы вложения помогают сделать наглядными пространственные эффекты общей теории относительности, то влияние тяготения на время можно оценить, рассматривая поведение часов. Согласно теории Эйнштейна, тяготение замедляет ход часов. Чем сильнее гравитационное поле, тем значительнее становится замедление времени. Представим себе, например, двух людей в доме. Один из них живет на первом этаже, а второй - на чердаке, как это изображено на рис. 5.12. Человек на первом этаже ближе к центру Земли и поэтому находится в чуть более сильном гравитационном поле, чем человек на чердаке. Сравнивая показания своих часов, они обнаружат, что часы на первом этаже идут (измеряют время) несколько медленнее, чем на чердаке. Это не значит, что часы, находящиеся далеко от Земли будут сильно спешить. В плоском пространстве-времени (вдалеке от всех источников тяготения) все часы идут с одной и той же постоянной скоростью. Часы же в гравитационном поле идут медленнее. Говоря конкретно, часы на поверхности Земли по сравнению с часами в космосе отстают за месяц примерно на одну миллиардную секунды.

РИС. 5.12. Замедление течения времени. Тяготение приводит к замедлению течения времени. Часы на первом этаже здания идут медленнее, чем часы на чердаке.

Гравитационное замедление времени - это третий эффект, предсказанный Эйнштейном для проверки общей теории относительности. В отличие от движения перигелия Меркурия и отклонения света Солнцем этот третий эффект настолько мал, что наука не располагала достаточно точными часами, чтобы его непосредственно измерить. В конце 1950-х годов, вскоре после смерти Эйнштейна, немецкий физик Рудольф Мёссбауэр открыл в ядерной физике один важный эффект. Этот эффект Мёссбауэра, за открытие которого его автор получил Нобелевскую премию, позволяет использовать атомные ядра в качестве исключительно точных часов. Это важное открытие нашло множество практических применений, а в 1959 г., Р. В. Паунд и Дж. А. Ребка в Гарвардском университете обнаружили, что эффект Мёссбауэра можно использовать для проверки общей теории относительности.

Любой источник света можно рассматривать как часы. Атомы излучают свет на определённых длинах волн или частотах, а время можно измерять, определяя частоту (скажем, числом колебаний в секунду) этого света. Поскольку гравитация замедляет ход времени, то свет, испущенный атомами в гравитационном поле, будет «сдвинут» в красную сторону - в сторону более длинных волн или более низких частот (т.е. станет делать меньшее число колебаний в секунду). Поэтому эйнштейновское предсказание о замедлении течения времени часто называют гравитационным красным смещением.

Свет, испускаемый атомами, нельзя использовать для измерения гравитационного красного смещения на Земле, так как атомы испускают его не со столь точно выдержанными частотами, чтобы удалось заметить то ничтожно малое замедление времени, которое имеет место на поверхности Земли. Однако эффект Мёссбауэра справедлив и для излучения гамма-лучей радиоактивными ядрами, скажем, кобальта (60Со) или железа (57Fe). Открытие Мёссбауэра свидетельствует, что подобные радиоактивные изотопы способны излучать гамма - лучи с поразительно точно выдержанными частотами. Паунд и Ребка осознали, что такая точность уже достаточна для обнаружения гравитационного красного смещения прямо здесь, на Земле.

Опыт Паунда и Ребки проводился в Джефферсоновской физической лаборатории Гарвардского университета (США). Гамма - лучи испускались ядрами радиоактивного кобальта (б0Со), источник гамма - лучей находился в подвале. Лучи проходили сквозь отверстия, сделанные в междуэтажных перекрытиях, и доходили до поглотителя в надстройке на крыше, расположенной на высоте 22,5 м. Измеряя частоту поглощённых гамма-лучей, Паунд и Ребка нашли, что она уменьшилась в точности настолько, насколько предсказывалось теорией Эйнштейна. Эксперимент был повторен в 1965 г. Р. В. Паундом и Дж.Л. Снайдером с таким же результатом. Наконец-то было подтверждено гравитационное замедление течения времени (см. рис. 5.13)!

Перейти на страницу:

Похожие книги