В разгар этих споров и размышлений Бор должен был уехать из Манчестера, потому что в Копенгагене на 1 августа 1912 года была назначена его свадьба с прекрасной девушкой Маргарет. После свадьбы молодожены планировали отправиться в путешествие по Норвегии. Бор решил совместить научные интересы с личными и уговорил Маргарет поехать в свадебное путешествие в Шотландию, по дороге навестив Резерфорда. В результате молодые сначала остановились в Кембридже, где Нильс неделю доделывал статью, а Маргарет писала под диктовку и правила его английский. Затем они отправились в Манчестер, к Резерфорду, и вручили ему плод своего совместного труда. Сотрудники Резерфорда были потрясены тем, что их старый приятель, «простак-датчанин», отхватил такую красавицу. Лишь после этого молодожены отправились в двухнедельное свадебное путешествие по Шотландии.
– Все учёные такие… странные? – озадаченно спросила Галатея.
Дзинтара тяжело вздохнула, подняла глаза к потолку, что-то прикинула в уме и коротко ответила:
– Многие.
Она снова уткнулась в книжку.
– Осенью 1912 года Бор начал работать внештатным преподавателем в Копенгагенском университете. В течение года он написал и опубликовал три статьи, которые стали основой атомной физики и вехой в истории естествознания. Бор соединил не только строение атома и линии Фраунгофера, но и добавил в свою теорию, на первый взгляд совсем далёкую от них, плавную кривую Планка, которая описывала непрерывный спектр звёзд и электролампочек.
– Как он смог? – поразилась Галатея. – Объединить атом Резерфорда, линии Фраунгофера и электроламповую кривую Планка?
– Вообще говоря, этого никто не знает – как учёному приходит в голову гениальная идея, объединяющая столько разнородных физических фактов. Но Бору это удалось: он взял модель атома Резерфорда для водорода, где был всего один электрон, и ввел два существенных отличия планетарной модели атома от реальной Солнечной системы. Одно предположение накладывало запрет на свободное расположение орбит: если в Солнечной системе планеты могут вращаться по любым орбитам, в атоме их набор стал жёстко заданным. Зато второе предположение давало электронам невиданную ранее свободу: если реальные планеты, выбрав в момент рождения какую-то орбиту, оставались прикованы к ней навечно, то в атоме Бора электроны могли прыгать с орбиты на орбиту, словно птички по жёрдочкам.
– Птички на жёрдочках! – развеселилась Галатея.
– Да, трудно представить, что Юпитер скачет сначала на орбиту Марса, а потом прыгает в гости к Нептуну! – усмехнулся Андрей.
– Верно, способность к перемене орбит стала кардинальным отличием электрона в атоме от реальной планетной системы. Кроме того, Бор предположил, что в случае прыжка с верхней орбиты на нижнюю электрон выпускает порцию энергии в виде света или электромагнитного излучения. Перейти с нижней орбиты на верхнюю электрон может, только поглотив аналогичную порцию внешнего излучения. Частоту этого излучения Бор умножил на постоянную Планка и получил величину, которую счёл разницей в энергии между орбитами. Тем самым он неожиданно для самого себя объяснил существование серий спектральных линий Бальмера и Лаймана и даже вывел формулу Ридберга, выразив константу Ридберга через фундаментальные физические постоянные.
– Ой, для меня это тоже неожиданно! Как же он объяснил существование этих линий? – всполошилась Галатея.
– Представьте себе десяток жёрдочек. Нижняя имеет первый номер, верхняя – десятый. Пусть по этим жёрдочкам прыгают весёлые птички – синички. Каждый прыжок птички вниз дает излучение определённой длины волны – спектральную линию. Чем больше расстояние между жёрдочками, тем больше энергия излучения – и, по формуле Планка, меньше его длина волны. Пусть на жёрдочках с номерами от двух до десяти сидит по птичке. И пусть каждая из них спрыгнет на пустую нижнюю орбиту-жёрдочку с номером один. Это породит серию ультрафиолетовых линий – серию Лаймана. Если же птички, сидящие на орбитах с третьей по десятую, перескочат не на первую, а на вторую орбиту, энергия излучения будет поменьше – это серия Бальмера из видимого диапазона. А если заставить птичек с орбит четыре-десять перепрыгнуть на орбиту три, мы получим инфракрасную серию линий Пашена.
– Вот оно что! Это не планетарная, а синичная модель атома! – прошептала поражённая Галатея.
– Если мимо наших жёрдочек будет пролетать световой квант подходящей энергии, синичка сможет поймать его и перепорхнуть на более высокую жёрдочку. Такие пойманные в атоме кванты света приведут к появлению тёмных линий Фраунгофера на фоне сплошного спектра. Если посмотреть на формулу Ридберга в свете модели атома Бора, то станет понятно, что число N – это номер орбиты, на которую перепрыгивают синички-электроны, а K – номер орбиты, на которой они сидели раньше. Конечно, число электронных орбит не ограничивается десятью – их бесконечно много, поэтому число К может увеличиваться до бесконечности, но формула Ридберга и правила Бора по-прежнему будут выполняться.