Читаем Космические твердотопливные двигатели полностью

В современном варианте РН со стартовой массой 21,4 т способна вывести на околоземную орбиту высотой 560 км полезный груз массой 181 кг. Высота РН 23 м, максимальный диаметр корпуса 1,13 м. Маршевые РДТТ этой ракеты развивают тягу 476, 275, 125 и 25 кН (в соответствии с очередностью их включения) и функционируют от ~75 (первая ступень) до ~ 30 с (последняя ступень).

Эти двигатели не имеют устройств для изменения вектора тяги, а управление полетом РН «Скаут» производится при помощи аэродинамических и газовых рулей, установленных на первой ступени, и неподвижных ракетных двигателей малой тяги, установленных на последующих ступенях. Причем на второй и третьей ступенях используются ЖРД, работающие на продуктах разложения перекиси водорода, а на четвертой — вспомогательные РДТТ, которые сообщают ступени вращательное движение вокруг продольной оси.

Из маршевых РДТТ ракеты «Скаут» мы рассмотрим подробно двигатель FW-4, который использовался[5] на четвертой ступени в 1965–1973 гг. Он имеет цилиндрический корпус диаметром 508 мм, масса снаряженного двигателя составляет ~300 кг. Причем 91 % этой массы приходится на смесевое топливо, содержащее перхлорат аммония, сополимер бутадиена, акрилонитрила, акриловой кислоты и алюминий.

В начальной части топливного заряда горящая поверхность образована центральным цилиндрическим каналом, затем следует кольцевая поперечная щель и снова — осевой круглый канал, переходящий в расширяющееся коническое отверстие. Упомянутая щель выполняет двоякую роль: компенсирует температурные напряжения, возникающие при изменении условий хранения РДТТ, и обеспечивает надлежащий характер изменения тяги: в первые 11 с работы она неравномерно возрастает с 21 до 30 кН, а в последующие 19 с плавно снижается. Среднее (за время работы) значение давления в камере РДТТ составляет 5,3 МПа.

Истекая из сопла, продукты сгорания развивают удельный импульс 2805 м/с. Сопло крепится к корпусу через теплоизолированный фланец из алюминиевого сплава. Горловина сопла образована графитовым кольцом, а расширяющаяся часть — конической оболочкой из нержавеющей стали (толщина 0,25 мм), защищенной изнутри графитовой тканью (на начальном участке) и кремнийфенольным материалом.

Корпус двигателя FW-4 защищен от прогара слоем теплоизоляции из бутадиеннитрильного каучука, наполненного окисью кремния. Сам же корпус с толщиной цилиндрической стенки 2 мм изготовлен из стеклопластика, т. е. материала на основе стеклянных волокон и полимерного связующего компонента (в данном случае эпоксидной смолы), И в этом примечательная особенность FW-4 по сравнению с рассмотренными ранее двигателями SRM и UA-1205.

Наиболее распространенный способ изготовления стеклопластиковых корпусов состоит в намотке непрерывной стеклоленты, пропитанной смолой, на вращающуюся оправку. Намотанная конструкция подвергается термоотверждению, после чего оправка извлекается из корпуса; с этой целью она делается либо разборной, либо разрушаемой (например, из гипса). Применение в РДТТ пластиковых корпусов связано с необходимостью решения ряда специфических проблем, одной из которых является значительное изменение геометрических размеров конструкции при нагружении ее рабочим давлением, что объясняется повышенной (по сравнению с металлами) деформацией пластиков.

При испытаниях FW-4 обнаружилась, например, следующая проблема, специфичная для этого двигателя. Непосредственно перед запуском маршевого РДТТ четвертая ступень РН «Скаут» раскручивается (при помощи упомянутых выше вспомогательных РДТТ) до 120–160 об/мин с целью ее стабилизации. Некоторые полезные грузы не отделяются от ступени, и если после окончания работы маршевого РДТТ включается механизм замедления вращения Полезного груза, корпус двигателя подвергается дополнительным нагрузкам. Стендовые испытания первых образцов FW-4 с имитацией вращения показали, что эти нагрузки могут вызвать расслоение стеклопластиковых корпусов, образованных внутренним слоем спиральной намотки и внешним слоем поперечной (кольцевой) намотки. Поэтому корпуса стали изготавливать, чередуя ту и другую намотки.

Армированные пластики широко применяются в качестве конструкционного материала для корпусов современных космических РДТТ. По сравнению с металлическими пластиковые корпуса имеют меньшую массу, что объясняется более высокой удельной прочностью пластиков. Этот параметр определяется как отношение прочности на растяжение к плотности материала. До введения Международной системы единиц (СИ) вместо плотности использовался удельный вес, и в этом случае указанный параметр имел размерность длины. Так вот в этой прежней размерности удельная прочность сталей, используемых в двигателях SRM и UA-1205, составляет 20 км, а стеклопластика, применяемого в FW-4, — около 50 км.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже