Необходимо отметить, что при создании столь крупного двигателя, каким является SRM, потребовалось провести лишь четыре огневых испытания полноразмерных экспериментальных РДТТ на стенде. Соответственно этому и затраты на разработку двигателя были небольшими. Указанное обстоятельство объясняется, в частности, тем, что корпорация Тиокол, разрабатывавшая SRM, использовала в полной мере опыт, накопленный в США в процессе создания и эксплуатации другого крупного РДТТ, который рассматривается ниже.
Двигатель UA-1205.
Этот РДТТ, созданный фирмой Юнайтед Текнолоджи Сентер, используется с 1965 г, для начального разгона различных РН семейства «Ти-тан-3». Как и в МТКК «Спейс Шаттл», в них также устанавливаются два РДТТ по параллельной схеме, которые работают от старта до высоты 45 км. Одна из таких РН представлена (в полете, в момент отделения отработавших РДТТ) на последней странице обложки брошюры.UA-1205 является самым крупным из эксплуатировавшихся до настоящего времени РДТТ. В его стальном цилиндрическом корпусе диаметром 3,05 м содержится около 193 т твердого топлива, при сгорании которого создается тяга, достигающая 5,3 МН. Продолжительность работы двигателя 125 с, развиваемый полный импульс тяги — около 500 МН с. UA-1205 (рис. 9) имеет секционную конструкцию и работает на смесевом топливе, близком по составу к тому, которое используется в двигателе SRM. Конфигурация заряда сходна с используемой в SRM, но задние торцы отдельных секций (всего их 7) не бронированы. Благодаря этому в начале работы РДТТ его тяга достигает максимального значения (которое указано выше), затем постепенно снижается до ~ 70 % и в последние 20 с резко спадает до нуля.
Рис 9 Двигательная установка с РДТТ UA-1205
В отличие от SRM в UA-1205 установлено обычное, а не «утопленное» сопло. В его конструкции предусмотрены графитовые кольцевые вкладыши (в горловине) и аблирующие материалы (фенопласты, армированные кремнеземными и другими тканями). Продукты сгорания, разгоняясь в сопле, сообщают двигателю удельный импульс 2610 м/с (в вакууме).
С целью управления полетом РН в каждом; двигателе UA-1205 предусмотрена система управления вектором тяги, основанная на несимметричном вводе вспомогательного рабочего тела — жидкой четырехокиси азота в сверхзвуковой поток газа в сопле. Для этого предусмотрены электроуправляемые форсунки, расположенные вокруг сопла примерно на середине расширяющейся части. На каждый квадрант поперечного сечения приходится шесть сблокированных форсунок, при включении которых в соответствующем месте сопла возникает боковая управляющая сила. Она обусловлена динамическим и химическим взаимодействием потоков, а также импульсом силы, создаваемым струей вспомогательного рабочего тела.
Хотя при этом осевая составляющая тяги возрастает, результирующий удельный импульс РДТТ все же уменьшается. Такой способ обеспечивает управление полетом ракеты по тангажу и курсу при использовании одного двигателя, а в случае двух двигателей (т. е. как в РН семейства «Титан-3») — и по крену. В UA-1205 четырехокись азота содержится в специальном баке, из которого вытесняется сжатым азотом. В течение полета расходуется около 80 % запаса жидкости, составляющего ~ 4 т.
С учетом РДТТ системы отделения двигательная установка на основе UA-1205 имеет высоту 26 м и массу 230 т.
РН семейства «Титан-3» являются наглядным примером эффективности использования «навесных» РДТТ с целью увеличения грузоподъемности серийных ракет, находящихся в эксплуатации. История этих РН началась с двухступенчатой межконтинентальной ракеты «Титан-2», приспособленной для вывода полезных грузов в космос. Разгон этой ракеты, использовавшейся в 1965–1966 гг. для запуска пилотируемых кораблей «Джемини», обеспечивался при помощи двух последовательно включавшихся ЖРД. Первый из них развивал тягу 1913 кН (на Земле) и работал 150 с, второй — тягу 445 кН за время 180 с.
После того как на «Титан-2» установили сверху еще одну жидкостную ступень, а с двух сторон корпуса прикрепили «навесные» твердотопливные двигатели UA-1205, стартовая масса РН возросла с 147 до 630 т, а грузоподъемность (масса полезного груза, выводимого на низкую околоземную круговую орбиту) увеличилась примерно с 3,5 до 13 т. Указанная модернизация РН была осуществлена в сжатые сроки и при денежных затратах, намного меньших тех, которые потребовались бы для создания совершенно новой РН равной мощности.
А. Иванов , Анатолий Степанович Иванов , Борис Викторович Раушенбах , Е. А. Карпов , Евгений Анатольевич Карпов , К. Д. Бушуев , Константин Давыдович Бушуев , П. А. Агаджанов , Павел Артемьевич Агаджанов
Научная литература / Прочая научная литература / Образование и наука