Возникающая в результате слияния двух мезонов струна, как правило, оказывается в возбуждённом состоянии, включающем как вращательные, так и колебательные моды. Но спустя некоторое время струна, подобно цепи танцоров, распадается надвое, образуя на свободных концах кварк и антикварк. В итоге мы имеем процесс, в ходе которого две струны соединяются в одну, которая затем снова распадается надвое.
Задача, которую я решил на чердаке, формулировалась следующим образом: предположим, что два мезона (две струны) до столкновения двигались с заданной энергией во встречных направлениях. Какова квантово-механическая вероятность того, что образовавшаяся после столкновения новая пара мезонов будет разлетаться в некотором заданном направлении? Задача выглядит ужасно сложной, и это просто математическое чудо, что она может быть решена.
Математическая задача описания идеального резинового шнура была решена ещё в начале XIX века. Колеблющуюся струну можно рассматривать как совокупность гармонических осцилляторов – по одному для каждого отдельного типа (моды) колебаний. Гармонический осциллятор – одна из немногих физических систем, которые могут быть полностью проанализированы с помощью очень простой математики уровня средней школы.
Добавить квантово-механическое описание, чтобы превратить струну в квантовый объект, тоже не составляет труда. Все, что необходимо помнить, – это что уровни энергии любой квантово-механической колебательной системы обладают дискретными значениями энергии (см. главу 1). Этих простых соображений достаточно, чтобы понять свойства одной колеблющейся струны, но описание двух взаимодействующих струн гораздо сложнее. Для этого мне пришлось разработать собственные правила с нуля, что сделало возможным локализовать сложное описание только для бесконечно малого времени, в течение которого происходит объединение струн. Как только это произойдёт, две струны снова становятся одной, описываемой простой математикой. Чуть позже струна рвётся, и этот процесс снова требует сложного описания, но опять же лишь для короткого промежутка времени. Таким образом, я сумел с большой точностью описать процесс объединения двух струн и последующего распада получившейся струны. Результат своих математических расчётов я сопоставил с уравнением Венециано, и они согласовались с идеальной точностью.
Барион представляет собой три струны, соединённые «звездой», мезон – одну открытую струну, но что такое глюбол? Начнём с цепочки танцоров. Допустим, танцоры, двигаясь в своём сложном танце, изогнули цепочку так, что два крайних танцора оказались рядом друг с другом. Не понимая, что они принадлежат к одной и той же цепочке, они могут взяться за руки. В результате получается замкнутый круг танцоров без свободных концов. То же самое может произойти и с колеблющимся мезоном. Предположим, что в процессе колебаний и вращений концы мезонной струны случайно оказались друг возле друга. Кварк на одном конце видит антикварк на другом и, не догадываясь, что его коллега принадлежит тому же самому мезону, хватает его, как змея собственный хвост. В результате получается глюбол: замкнутая струна, не имеющая на своих концах кварков. Большинство мезонов и барионов было известно задолго до создания теории струн, но глюболы были предсказаны ею, так сказать, с чистого листа. И если сегодня вы посмотрите на список известных частиц, то глюболы и их массы будут перечислены в нём наряду с барионами и мезонами.
Мезон превращается в глюбол
Глюболы, мезоны и барионы являются сложными объектами, которые могут вращаться и колебаться множеством способов. Например, струна, соединяющая концы мезона, может вибрировать, как пружина или даже как скрипичная струна; он может даже вращаться вокруг своей середины, растягиваясь под действием центробежной силы и образуя своеобразный адронный пропеллер. Эти возбуждённые состояния адронов соответствуют известным объектам, часть которых была обнаружена в экспериментах ещё в 1960-х.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука