Создание квантовой механики стало величайшим потрясением за всю историю физики. Квантовый мир – это мир постоянных флуктуаций, мир вероятностей и мир неопределённости. Но электрон не шатается по пространству, будто пьяный матрос по пирсу, он подчиняется достаточно строгим шаблонам случайности, которые могут быть точно описаны каббалистическими символами абстрактной математики. Однако небольшие усилия с моей стороны и немного терпения с вашей позволят нам перевести наиболее важные положения квантовой механики на простой и понятный человеческий язык.
Начиная с XIX века физики использовали метафору бильярда, представляя физический мир как набор взаимодействующих и сталкивающихся частиц. Эту аналогию использовали и Максвелл, и Больцман. Она используется и в настоящее время для объяснения квантового мира. В первый раз я слышал её от Ричарда Фейнмана, который придумал следующее описание:
То, что произойдёт далее, чрезвычайно сложно поддаётся предсказанию и точному описанию. Но почему? Потому что каждое столкновение умножает незначительные различия между начальными скоростями и положениями шаров, и даже очень малое изменение начальных параметров приводит к огромному изменению конечных скоростей и координат после множества столкновений. Ситуация подобной ультрачувствительности поведения системы к начальным условиям называется
В противоположность классическому квантовый бильярд совершенно непредсказуем, независимо от того, насколько точно мы зададим начальные условия. Не существует такой точности, которая позволила бы нам предсказать что-либо, кроме статистического поведения шаров. В классическом бильярде мы прибегаем к статистическому описанию из-за того, что мы не можем чисто технически достичь необходимой точности определения начальных условий, или из-за того, что решение соответствующих уравнений оказывается слишком сложным. Но квантовый случай не оставляет нам выбора. Законы квантовой механики содержат принципиальную неопределённость, которая не может быть устранена. Почему? Из-за чего мы оказываемся не в состоянии предсказать будущее на основе заданных начальных координат и скоростей? Ответ кроется в знаменитом принципе неопределённости Гейзенберга.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука