Читаем Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной полностью

Нильс Бор был самым философствующим из всех отцов современной физики. Философская революция, которая сопровождала создание квантовой механики, заставила Бора сформулировать его знаменитый принцип дополнительности. Дополнительность квантовой механики стала манифестом для многих её приложений, но любимым примером Бора был корпускулярно-волновой дуализм, возникший в физике после того, как Эйнштейн ввёл понятие фотона. Свет – это частицы или волны? Эти два представления выглядят настолько различными, что кажутся несовместимыми.

И тем не менее свет – это и волны, и частицы. Или более точно: в некоторых экспериментах свет ведёт себя как поток частиц. Очень слабый луч света, падающий на флюоресцирующий экран, оставляет на нём крошечные точечные пятнышки – доказательства дискретной природы света, состоящего из неделимых фотонов. С другой стороны, если этих точек достаточно много, они образуют на экране интерференционную картину – явление, которое имеет смысл только для волн. Всё зависит от того, как вы регистрируете свет и что хотите измерить в ходе эксперимента.

Оба эти описания являются дополнительными, а не противоречивыми.

Ещё одним примером дополнительности является принцип неопределённости Гейзенберга. В классической физике описание состояния частицы предполагает точное задание её положения в пространстве и импульса. Но в квантовой механике вы можете точно задать либо положение частицы, либо её импульс, и никогда – то и другое одновременно. Утверждение «частица имеет точное положение и импульс» следует заменить утверждением «частица имеет точное положение или точный импульс». Соответственно свет – это частицы или волны. Использование того или другого описания зависит от цели эксперимента.

Соединение квантовой механики с общей теорией относительности приводит к новому виду дополнительности – дополнительности чёрных дыр. Не существует однозначного ответа на вопрос: «Кто прав: наблюдатель, который остаётся снаружи горизонта чёрной дыры и регистрирует всю информацию, которая поступает к нему с поверхности, лежащей чуть выше горизонта, или наблюдатель, который везёт с собой сообщение, направляясь к центру чёрной дыры?» Каждый прав в своём собственном контексте: их свидетельства являются взаимодополняющими описаниями двух различных экспериментов. С одной стороны, экспериментатор, остающийся снаружи чёрной дыры, может бросать на неё предметы и регистрировать фотоны, приходящие с поверхности, расположенной чуть выше горизонта, наблюдать воздействие гравитационного поля чёрной дыры на траектории частиц, пролетающих вблизи горизонта, и т. п. С другой стороны, второй экспериментатор, готовящий эксперимент в своей лаборатории, может затем упасть вместе с лабораторией в чёрную дыру, пересечь горизонт и продолжить свои эксперименты на пути к её центру.

Дополнительные описания этих двух экспериментов различаются настолько радикально, что вызывают сомнения в справедливости постулированного нами принципа. Внешний наблюдатель видит[100] вещество, падающее на горизонт, замедляющееся и замирающее чуть выше него. Вблизи горизонта вещество распадается на отдельные частицы и, наконец, возвращается обратно в виде хокинговского излучения. Фактически внешний наблюдатель видит, как его отчаянный коллега испаряется и возвращается обратно в виде света и сияния.

Но опыт внешнего наблюдателя не имеет ничего общего с опытом наблюдателя свободно падающего. Свободно падающий наблюдатель благополучно пересекает горизонт, даже не замечая этого. Ни удара, ни высокой температуры, никакого иного свидетельства, что он прошёл «точку невозврата». Если чёрная дыра является достаточно большой, скажем, радиусом в несколько миллионов световых лет, он будет падать в неё миллионы лет, не ощущая никакого дискомфорта. По крайней мере, пока он не достигнет центра чёрной дыры, где приливные силы, являющиеся следствием неоднородности гравитационного поля, станут настолько сильными, что… нет, лучше даже не думать о том, что с ним произойдёт.

Два столь разных описания создают впечатление неразрешимого противоречия. Но как мы узнали от Бора, Гейзенберга и их последователей, единственный вид противоречий, который следует принимать во внимание, это когда два различных описания ведут к предсказанию различных результатов одного и того же эксперимента. Если же речь идёт о двух принципиально несовместимых экспериментах, то нет и никакого повода беспокоиться о противоречивости описаний. Свободно падающий в чёрную дыру наблюдатель никогда не сможет обменяться опытом с оставшимся снаружи: после благополучного пересечения горизонта он находится вне контакта со всеми наблюдателями, которые остались по ту сторону. Поэтому дополнительность чёрных дыр – совершенно законная физическая вещь, какой бы странной она ни казалась.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука