Читаем Космос полностью

Рассмотрим квадрат со стороной, равной единице (одному сантиметру, одному дюйму, одному световому году - не суть важно). Диагональ ВС делит квадрат на два прямоугольных треугольника. В таких прямоугольных треугольниках, согласно теореме Пифагора, 12 + 12 = х2. Поскольку 12 +12 = 1 +1 = 2, то х2 = 2, и мы можем записать, что х = 2, то есть корню квадратному из двух. Предположим, что 2 является рациональным числом, то есть 2 = p/q, где p и q - целые числа. Они могут быть любыми, сколь угодно большими, но обязательно целыми числами. Мы, конечно, потребуем,

цивилизаций). Но главное - высказывание Бора вырвано из контекста и искажено. Полностью цитата звучит так: «Противоположностью правильного утверждения является ложное утверждение. Но противоположность глубокой истины вполне может оказаться другой глубокой истиной» (The opposite of a correct statement is a false statement. But the opposite of a profound truth may well be another profound truth). Эту формулировку невозможно опровергнуть таким простым способом, как это делает Саган. Во-первых, понятие противоположности гораздо шире отрицания. Например, отрицанием суждения «эгоизм - полезная черта характера» будет утверждение «эгоизм -вредная черта характера». Безусловно, это отрицание является одновременно и противоположным суждением. Но вот суждение «альтруизм - полезная черта характера» хотя и противоположно исходному суждению, отрицанием его не является. И между прочим, все эти утверждения можно назвать глубокими. Во-вторых, согласно Бору, если бы даже суждение, противоположное его афоризму, оказалось ложным, это вовсе не было бы опровержением. Просто это говорило бы о том, что данный афоризм не является глубокой истиной, а претендует лишь на роль правильного суждения, отрицание которого ложно. В-третьих, в оригинальном высказывании Бора не говорится, что противоположность любой глубокой истины обязательно является глубокой истиной. Утверждается лишь, что это возможно. Поэтому вполне правомерно допустить, что само суждение Бора является глубокой истиной, но его отрицание таковой не является. - Пер.

496

чтобы у них не было общих делителей. Если мы, например, заявляем, что 2 = 14/10, то, безусловно, можем сократить эту дробь на множитель 2 и записать: p = 7, q = 5 вместо p = 14, q = 10. Будем далее считать, что у числителя и знаменателя сокращены все общие множители. Для выбора значений p и q y нас остается бесконечное число вариантов. Возведя в квадрат равенство 2 = p/q, получим: 2 = р2/q2, или после домножения обеих частей на q2:

p2= 2q2. (1)

Таким образом, р2 представляет собой некоторое число, умноженное на 2. Однако квадрат любого нечетного числа является нечетным числом (12 = 1,32 = 9, 52 = 25, 72 = 49 и т. д.). Получается, что само число должно быть четным, то есть можно записать = 2s, где s - некоторое целое число. Подставив его в уравнение (1), находим:

p2 = (2s)2 = 4s2 = 2q2.

Деление обеих частей последнего равенства на 2 дает: g2 = 2s2. То есть q2 тоже является целым числом, и, опираясь на тот же аргумент, что был использован для р, мы заключаем, что q тоже является четным. Но если числа p и q оба делятся на два, значит, они содержат несокращенный общий делитель, что противоречит нашему предположению. Reductio ad absurdum. Но в чем состояло предположение? Доказательство не может запретить нам сократить общие множители, разрешив использовать 14/10, но запретив 7/5. Поэтому ошибочным должно быть начальное предположение: p и q не могут быть целыми числами, a 2 является иррациональным числом. В действительности 2 = 1,4142135...

Насколько ошеломляющее и неожиданное заключение! Какое элегантное доказательство! Но пифагорейцы считали необходимым скрывать это великое открытие.

497

 

<p><strong>ПРИЛОЖЕНИЕ 2. Пять пифагоровых* тел</strong></p>

Правильный многоугольник - это двумерная фигура с определенным числом л одинаковых сторон. В случае л = 3 получается равносторонний треугольник, при = 4 - квадрат, при л = 5 - правильный пятиугольник и т. д. Многогранник - это трехмерная фигура, все стороны которой являются многоугольниками. Например, куб имеет шесть квадратных граней. Правильным называют многогранник, все грани которого представляют собой одинаковые правильные многоугольники, причем в каждой вершине сходится одинаковое число граней. Для работ пифагорейцев и Кеплера фундаментальное значение имеет факт, что существует пять, и только пять, правильных тел. Простейшее доказательство этого факта можно получить из открытого значительно позже Декартом и Леонардом Эйлером соотношения, связывающего число граней F, число ребер Е и число вершин Ив любом многограннике:

V-E+F=2. (2)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука