Есть и ещё одна очень интересная аналогия. В коллайдерах мы сталкиваем элементарные частицы, чтобы понять не только их устройство, но и, собственно, устройство Вселенной. Теперь же, только представьте, мы имеем возможность наблюдать, к примеру, столкновения нейтронных звёзд, чтобы понять, как устроены уже они. Так мы познаём, опять же, Вселенную, но в принципиально других масштабах.
Гравитационные волны помогут сформировать карту ближайшей Вселенной и обнаружить тёмную материю
Галактики-спутники Млечного Пути представляют огромный интерес для космологии, фундаментальной физики и астрофизики. Однако из-за крайне низкой светимости их невероятно сложно обнаружить. Собственно, из достоверно подтверждённых галактик есть лишь 15. Хотя некоторые исследования показывают, что на самом деле галактик может насчитываться от нескольких сотен до более тысячи (Michael T. Busha, 2010). К примеру, яркость нашей галактики не даёт нам нормально увидеть галактику Андромеды, хотя её угловые размеры в 6 раз больше Луны.
Пользователь Reddit наглядно продемонстрировал, какая красота скрывается за светом наших звёзд
Всё это невероятно затрудняет изучение Вселенной. Гравитационно-волновая астрономия, как мы уже говорили, сможет дать невероятный прорыв в этом направлении. Между тем к настоящему времени ещё не разработаны инструменты для её реализации. LIGO и VIRGO – это детекторы гравитационных волн, доказавшие их существование. Эти детекторы используют сейчас для обнаружения только высокочастотных гравитационных волн. Одним из инструментов, способных фиксировать среднечастотные ГВ, должна стать Laser Interferometer Space Antenna (Лазерная интерферометрическая космическая антенна), запуск которой запланирован на 2034 год. Правда, существует вероятность, что он будет перенесён на 2029 год. Собственно говоря, в декабре 2015 года был запущен спутник LISA Pathfinder, предназначенный для отработки некоторых решений для оборудования LISA и показавший реализуемость проекта LISA.
Так для чего всё это нужно?
Гравитационно-волновая астрономия позволит заглянуть за пределы той физики, в границы которой мы упёрлись из-за недостаточной чувствительности создаваемых сегодня приборов. Так, к примеру, мы фиксируем гравитационные взаимодействия между нашей Галактикой и её спутниками (Alis J. Deason, 2020), но не видим абсолютное большинство из них (Elinore Roebber, 2020). Это мешает нам составлять более точные модели для изучения всё той же гравитации или тёмных материи и энергии.
Кроме того, учёные предполагают, что крайне низкая светимость галактик-спутников объясняется тем, что они состоят в основном из самых старых и бедных металлами звёзд, что даст нам возможность изучать ранние этапы эволюции Вселенной.
В конце концов, мы сможем составить более подробную карту собственной Галактики. Ведь сейчас мы имеем лишь приближённую модель.
Кому полезно открытие гравитационных волн, кроме физиков?
Подведём своего рода итог, чтобы принять факт существования гравитационных волн как данность. При этом обозначим вероятное практическое применение и направления дальнейшего развития этой потрясающей, опередившей своё время работы по их обнаружению.
Суть гравитационных волн простыми словами
11 февраля 2016 года на пресс-конференции в Вашингтоне группа учёных обсерватории LIGO объявила о том, что смогла зафиксировать гравитационные волны, испущенные при столкновении двух чёрных дыр 1,3 млрд лет назад.
После этого оборудование LIGO, Virgo и других обсерваторий непрерывно совершенствовалось. В итоге гравитационные волны от слияния чёрных дыр регистрировались уже целых четыре раза.
16 октября 2017 года весь мир узнал ещё об одном выдающемся открытии астрономов LIGO, Virgo и ещё 70 обсерваторий, которые достигли таких мощностей, что смогли зафиксировать гравитационные волны от слияния двух нейтронных звёзд.
Фотография источника гравитационных волн – NGC 4993 (в центре различима вспышка). Фото с сайта nplus1.ru
Отличительной особенностью данного открытия стало то, что это событие было зафиксировано и в оптическом диапазоне. То есть учёные буквально его увидели!
Никто не сомневался, что открытие гравитационных волн будет удостоено Нобелевской премии по физике. Так и произошло. Премию вручили Райнеру Вайсу, Барри Баришу и Кипу Торну.
При этом учёные совершенно не торопятся говорить о практическом применении гравитационных волн. Сначала необходимо проанализировать результаты, сделать соответствующие выводы и только после этого двигаться дальше.
Но каждый раз, когда приходится отвечать на подобные вопросы, специалисты напоминают, что ещё совсем недавно человечество точно так же не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.
Чем они могут быть полезны?