И наконец, он стремился решить давнюю проблему: определить, почему орбита Меркурия «плывет» и слегка отклоняется от параметров, предписанных законами Ньютона. В обычных условиях планеты в своем движении вокруг Солнца описывают идеальный эллипс с легкими возмущениями, вызванными притяжением ближайших планет, и в целом их траектория напоминает лепестки цветка. Однако в орбите Меркурия, даже с учетом влияния на него ближайших планет, наблюдается небольшое, но заметное отклонение от законов Ньютона. Это отклонение, известное как «прецессия перигелия», первым наблюдал в 1859 г. астроном Урбен Леверье; его расчеты дали крохотный сдвиг перигелия орбиты Меркурия, равный 43,5 угловые секунды за столетие, который было невозможно объяснить законами Ньютона. Сам по себе факт существования в ньютоновых законах движения очевидных нестыковок новостью не был. В начале XIX в., когда астрономы ломали головы над аналогичными возмущениями орбиты Урана, перед ними встал непростой выбор: либо отказаться от известных законов движения, либо постулировать существование еще одной, неоткрытой планеты, действующей на орбиту Урана. В 1846 г., когда в том самом месте, где должна была находиться эта планета согласно законам Ньютона, действительно обнаружили новую планету – Нептун, физики вздохнули с облегчением.
Но Меркурий по-прежнему оставался загадкой. Не желая отказываться от законов Ньютона, астрономы по традиции постулировали существование еще одной планеты и даже дали ей название Вулкан; подразумевалось, что эта неизвестная планета обращается вокруг Солнца внутри орбиты Меркурия. Однако как ни всматривались астрономы в ночное небо, они не могли отыскать никаких экспериментальных доказательств ее существования.
Эйнштейн был готов принять более радикальную интерпретацию: возможно, сами законы Ньютона неверны или по крайней мере неполны. В ноябре 1915 г. после трех лет, растраченных впустую на теорию Эйнштейна – Гроссмана, он вернулся к кривизне Риччи, от которой отказался в 1912 г., – и заметил свою ключевую ошибку. Эйнштейн отбросил кривизну Риччи[14] потому, что, исходя из нее, для произвольного материального объекта можно было получить больше одного гравитационного поля, что казалось нарушением принципа Маха. Но затем общая ковариантность помогла ему понять, что на самом деле эти гравитационные поля математически эквивалентны и дают один и тот же физический результат. Мощь общей ковариантности произвела на Эйнштейна сильное впечатление: она не только серьезно ограничила возможные теории гравитации, но обеспечила единственно возможный физический результат, поскольку многие гравитационные решения оказались эквивалентными.
После этого для Эйнштейна начался период величайших (возможно, во всей его жизни) ментальных усилий – поиска окончательного уравнения. Он отбросил все постороннее и напряженно трудился, пытаясь рассчитать прецессию перигелия Меркурия. Найденные записные книжки показывают, что он раз за разом предлагал решение, а затем тщательнейшим образом проверял, получается ли из него в пределе при малых гравитационных полях старая теория Ньютона. Задача оказалась чрезвычайно трудоемкой, так как тензорные уравнения включали в себя десять отдельных уравнений вместо одного у Ньютона. Если предложенное решение не давало в пределе уравнения Ньютона, Эйнштейн брал следующее и проверял, не получится ли из него нужный результат. Этот изматывающий, почти геркулесов труд был наконец завершен в конце ноября 1915 г. Эйнштейн чувствовал себя совершенно измученным. После долгих утомительных вычислений по старой теории 1912 г. выяснилось, что предсказанная ей прецессия орбиты Меркурия составляет 42,9 угловой секунды за столетие, что с вполне приемлемой точностью совпадало с экспериментальной величиной. Эйнштейн был потрясен. Первое надежное экспериментальное доказательство в пользу новой теории буквально опьяняло его. «Несколько дней я был вне себя от возбуждения, – вспоминал он. – Мои самые дерзкие мечты сбылись». Сбылась мечта всей жизни – найти релятивистские уравнения для гравитации.
Эйнштейна потрясло, что при помощи абстрактного физико-математического принципа общей ковариантности ему удалось получить надежный и убедительный результат, совпадающий с экспериментальными данными: «Представьте себе, как я радовался практической применимости общей ковариантности и тому, что в результате из уравнений мне удалось корректно вывести смещение перигелия Меркурия».
Воспользовавшись новой теорией, он заново рассчитал отклонение света звезд Солнцем. Добавление к его теории искривленного пространства означало, что конечный результат составит 1,7 угловой секунды (около 1/2000 доли градуса), то есть вдвое больше, чем он считал ранее.