Модель Евдокса оказалась столь значима в истории геометрической астрономии, что нам просто необходимо доказать ее хотя бы схематично для демонстрации элегантности астрономической доктрины, разработанной более двадцати трех столетий назад. Будем различать несущую и несомую сферы. На ил. 44 направление взгляда (сверху) совпадает с осью первой сферы и параллельно оси цилиндра, на поверхности которого находятся точки F
, E и A. (Поучительно будет спросить, почему этот цилиндр не параллелен другой оси; или, например, не расположен симметрично между ними.) A – исходная точка планеты, а дуга AB – ее движение вдоль экватора несомой сферы за какое-то время. Если смотреть сверху, то он (экватор) будет казаться эллипсом, а угол AOB, как он виден на рисунке, – будет меньше реального трехмерного угла. На самом деле он равен изображенному на рисунке углу AOC, где C – это точка, отделившаяся от A в тот же момент времени, что и точка В, но движущаяся по другому кругу. Точки B и C, очевидно, будут располагаться на одном и том же уровне (CB образует перпендикуляр с OA). Рассмотрим теперь, как это составное движение планеты будет осуществляться во времени, если наблюдать за ним в плоскости диаграммы (то есть ортогональной проекции на эту плоскость). Планета движется вверх до точки B несомым движением и дополнительно поворачивается движением несущей сферы, осуществляющей перенос отрезка OB в OE; причем угол BOE равен углу AOC. Необходимо доказать, что точка E лежит на линии сечения цилиндра. Если угол CBD прямой, а точка D лежит на отрезке OC, то достаточно показать неизменность длины отрезка CD; поскольку в этом случае вся совокупность точек типа D (включая F) будет лежать на окружности с центром в O. Угол FEA также будет прямым, поэтому точка E будет лежать на окружности с диаметром FA, то есть на сечении цилиндра.
45
Точное изображение модели Евдокса в применении к Юпитеру. Представлен вид трехмерной траектории в перспективе.
Проще всего получить доказательство постоянства длины отрезка CD
, используя свойства эллипса, но, рассматривая соответствующую часть диаграммы в трех измерениях, несложно провести доказательство, основанное на отношении сторон подобных треугольников. Это легче, чем осуществить первичную визуализацию; и уж точно легче, чем доказать теорему о параболическом листе. Я бы хотел только добавить, что фокус этой параболы является четвертой частью расстояния от A до F.Здесь мы имеем дело с задатками впечатляющей геометрической модели планетного движения, но, как это ни прискорбно, она, если брать ее в чистом виде, обладает рядом существенных недостатков. Иногда истина искажается. Неверно будет полагать, будто все витки попятного движения планет идентичны друг другу (как показано на ил. 42); неверно и то, что смещение планеты по широте обязательно должно быть значительным. Попятные движения Сатурна и Юпитера могут быть довольно правдоподобно представлены без поправок для широты (см. ил. 45 для Юпитера). К сожалению, если не вводить добавочных сфер, в этой модели можно свободно менять только два основных параметра: относительные скорости по гиппопеде и самой гиппопеды; и размеры гиппопеды, зависящие от наклона вращающейся сферы. Этих параметров явно недостаточно для согласования модели с действительными движениями Марса, Венеры или Меркурия. Если правильно задать скорости, то длина дуги попятного движения даст чудовищную ошибку, и наоборот.
С современной точки зрения относительные скорости
по гиппопеде и самой гиппопеды зависят как от самих планет, так и от угловой скорости Земли при ее обращении вокруг Солнца, а размер гиппопеды по отношению к сфере зависит от относительных размеров планетных орбит при их вращении вокруг Солнца, включая нашу планету. Не углубляясь в детали, заметим следующее: в первом случае факты, очевидно, могут потребовать движение самой гиппопеды с такой высокой скоростью по сравнению со скоростью находящейся на ней планеты, что фаза попятного движения окажется просто нереализуемой. Именно это и происходит в упомянутых примерах. И во втором случае, если мы зафиксируем в нашей модели длину дуги попятного движения в строгом соответствии с наблюдениями, это вынудит нас принять как следствие получившуюся гиппопеду, независимо от того, какой будет ее ширина. Дело не только в ее чрезмерной величине для Марса и Венеры, но еще и в том, что в этом случае планетное движение по широте имеет весьма отдаленное отношение к орбитальным размерам. Это обусловлено преимущественно расположением планетных орбит, включая орбиту Земли, в близких друг к другу, но разных плоскостях.КОСМОЛОГИЯ АРИСТОТЕЛЯ