Еще один «космический бонус» для физики – это частицы высокой энергии, которые физики используют для зондирования внутренней структуры элементарных частиц и рождения новых их типов, ранее неизвестных ученым. Чем выше энергия частицы-ударника, тем интереснее результаты. Большой адронный коллайдер – самый мощный ускоритель частиц на Земле – способен разгонять протоны до энергии 1013
эВ. Обсуждающийся сейчас проект Очень большого адронного коллайдера (VLHC) предусматривает энергию 1014 эВ. Вряд ли в обозримом времени будет создано что-либо более мощное. А из космоса в составе галактических космических лучей к нам прилетают протоны с энергией до 1020 эВ, в миллионы раз энергичнее тех, что разгоняет коллайдер. Ускоритель с такой энергией вообще нельзя построить на Земле, поскольку его размер был бы больше, чем у самой нашей планеты. Не говоря уже о фантастической стоимости такого прибора. А из космоса быстрые частицы прилетают к нам бесплатно. Академик Яков Борисович Зельдович говорил, что Вселенная – это ускоритель для бедных. Но, как видим, и самые богатые не способны создать такой ускоритель, который бы конкурировал с Вселенной.И, наконец, именно астрономия указала физикам на существование в природе двух таинственных сущностей – темной материи и темной энергии. Поисками темной материи (а точнее, темного вещества) активно заняты сейчас физики-экспериментаторы. Понять антигравитационную сущность темной энергии пытаются физики-теоретики. Без астрономических наблюдений мы бы никогда не узнали о существовании этих двух загадочных объектов природы, заполняющих Вселенную своей массой-энергией на 95 %. Можно лишь восхищаться тем, что, наблюдая 2 % массы Вселенной (звезды, межзвездный газ, планеты), астрономы смогли узнать о существовании и некоторых свойствах невидимых 98 % массы Вселенной. Это открывает перед физикой захватывающую перспективу: изучение нашего мира, по сути, только начинается! И главная роль в этом принадлежит астрофизике.
Инструменты астрофизики
Астрономия в целом и астрофизика в частности покоятся на трех «китах»: телескоп, фотокамера, спектрограф. Эти три прибора анализируют луч света, выведывая у него космические тайны. Конечно, с каждым годом астрофизики изобретают и другие полезные приборы: поляриметры, фотометры, детекторы инфракрасного, рентгеновского и гамма-излучения, детекторы космических лучей и нейтрино, детекторы гравитационных волн, – но основой астрофизики по-прежнему остаются оптический телескоп, фотокамера и спектрограф. Телескоп создает изображение далекого светящегося объекта, спектрограф показывает, из каких цветов оно состоит, а фотокамера запоминает то и другое.
Начнем с телескопа. Любой светящийся объект можно представить как множество светящихся точек. Все космические тела очень далеки от нас, поэтому от каждой их точки к нам приходят практически параллельные лучи света, к тому же очень тусклые. Задача телескопа – собрать как можно больше этих лучей и максимально сильно сконцентрировать их, чтобы каждая точка далекого объекта отобразилась бы точкой в изображении, построенном телескопом. Эту задачу выполняет объектив телескопа, который может состоять из одной или нескольких линз, либо из одного или нескольких зеркал, либо же из комбинации зеркал и линз.
Чем больше диаметр объектива, тем больше тусклого света он может собрать и быстрее построить изображение далекого объекта. Чтобы оценить возможности телескопа, сравним, например, зрачок нашего глаза и объектив обычного фотоаппарата. Диаметр нашего зрачка около 5 мм, а диаметр объектива фотокамеры около 50 мм. То есть площадь объектива фотокамеры в 100 раз больше. Поэтому нашему глазу для фиксации изображения днем требуется экспозиция около 1/10 секунды, а фотокамере – всего около 1/1000 с. Современные крупные телескопы имеют объектив диаметром около 5000 мм (а некоторые даже больше), поэтому их светособирающая площадь в 1 млн раз больше, чем у нашего зрачка. К тому же и экспозиция при фотографировании неба телескопом составляет не доли секунды, как у глаза, а минуты, часы и порою даже сутки. Поэтому телескоп способен увидеть очень тусклые и далекие космические объекты.
Конструкции телескопов постоянно совершенствуются и усложняются, поскольку астрономы предъявляют к ним все более высокие требования. Идеальный телескоп должен одновременно видеть все небо, различая все самые мелкие детали у всех сколь угодно удаленных и тусклых объектов во всем диапазоне электромагнитного спектра. Понятно, что это фантастическое требование никогда не будет выполнено в полном объеме. Поэтому конструкции телескопов эволюционируют в каждом из этих направлений по отдельности, подобно живым существам. Одни животные хорошо плавают, другие хорошо бегают, третьи хорошо летают. Так же и телескопы: одни из них видят большие области неба, но не очень четко; другие видят четко, но лишь крохотные клочки небосвода; одни видят в оптическом диапазоне, другие – в инфракрасном, третьи – в рентгеновском, и т. д.