Читаем Космос. Прошлое, настоящее, будущее полностью

Вторым важным достижением звездной астрофизики стало выяснение источников энергии звезд. Этих источников два – гравитационное сжатие и термоядерные реакции. Действуют они попеременно: в эпоху формирования звезды, а также в процессе ее смерти работает гравитационное сжатие; но на основном, длительном этапе жизни звезды ее излучение поддерживают термоядерные реакции. Они вступают в действие, когда в процессе первичного сжатия звезды в ее недрах достигаются необходимые для этого условия, прежде всего – температура в несколько миллионов градусов.

Чем массивнее звезда, тем сильнее сжимает она недра своим весом, тем выше нужны температура и давление, чтобы этому сжатию противостоять. Но с ростом температуры стремительно возрастает интенсивность термоядерных реакций превращения водорода в гелий. Эти реакции потому и называют термоядерными, что необходимые для их протекания столкновения ядер водорода – протонов – друг с другом стимулируются высокой температурой. Поэтому чем массивнее звезда, тем ярче она светит и тем горячее ее поверхность. Астроному, наблюдающему звезду со стороны, доступны две ее характеристики – мощность излучения (светимость) и температура поверхности. При массовом изучении звезд место каждой из них отмечают точкой на плоскости, где по вертикальной координате отложена светимость звезды, а по горизонтальной – температура поверхности. А поскольку температура прямо влияет на вид спектра, астрономы обычно вместо температуры используют именно его под названием «спектральный класс».

Яркие и горячие – это самые массивные звезды, в десятки раз превышающие по массе наше Солнце, а тусклые и холодные – это самые мелкие звезды, которые в несколько раз легче Солнца. На специальной диаграмме Герцшпрунга – Рассела их расположение называют «главной последовательностью», поскольку в ней сосредоточено 90 % всех наблюдаемых звезд. Их так много потому, что здесь проходит основной период их жизни, связанный с превращением водорода в гелий. А поскольку водорода в звезде изначально много, этот период занимает 90 % времени жизни звезды. Типичной звездой главной последовательности является наше Солнце.


Наблюдаемое положение звезд на диаграмме Герцшпрунга – Рассела, от самых массивных светил (50–100 M) до самых легких (0,08 M), отлично согласуется с теоретическими расчетами. Для большинства звезд главной последовательности выполняется соотношение между светимостью, массой и радиусом: L M4 µ R5. Но у звезд малой и большой массы L M3, а у самых массивных L M.

На главную последовательность звезды попадают после младенческой стадии гравитационного сжатия; в этот период их называют протозвездами. Начало стадии главной последовательности определяется как момент, когда потери энергии звезды на излучение полностью компенсируются выделением энергии в термоядерных реакциях. Окончание стадии главной последовательности соответствует образованию у звезды однородного гелиевого ядра, после чего звезда уходит с главной последовательности, раздувается и становится гигантом. Самые массивные звезды остаются на главной последовательности несколько миллионов лет, после чего, полностью израсходовав в своей горячей центральной области водородное топливо, покидают ее. Звезды с массой Солнца (1 M) остаются на главной последовательности около 10 млрд лет. А у звезд с массой M ≲ 0,8 M стадия термоядерного «горения» водорода столь продолжительна, что за время жизни Галактики они еще не успели покинуть главную последовательность.

Уход с главной последовательности происходит потому, что по мере «сгорания» водорода в центре звезды меняется ее структура. Плотное гелиевое ядро сжимается, его температура растет, в окружающем его водороде реакции термоядерного синтеза становятся более интенсивными, растет светимость звезды. Наружные слои звезды нагреваются и расширяются, становясь более прозрачными и давая путь избыточному потоку излучения, выходящему из ядра звезды. Размер звезды значительно возрастает, вплоть до гигантского, во много раз превосходя радиус Солнца (R = 7 · 108 м). При этом поверхность звезды немного охлаждается, звезда краснеет.

Звезду значительно большей светимости и размера, чем у большинства звезд того же спектрального класса, астрономы называют гигантом. На диаграмме Герцшпрунга – Рассела большинство звезд принадлежит главной последовательности, а звезды-гиганты, уже покинувшие главную последовательность и движущиеся вдоль «ветви гигантов», приближаются к концу своей эволюции, увеличивая при этом свой радиус и светимость и уменьшая температуру своей поверхности. Особенно велико различие в размерах и светимостях между красными гигантами и красными карликами, населяющими нижнюю часть главной последовательности. Тогда как красные карлики в несколько раз меньше Солнца и светят в сотни раз слабее его, красные гиганты в десятки раз больше Солнца и светят в сотни раз сильнее. Звезды еще большей светимости и размера называют сверхгигантами.

Перейти на страницу:

Все книги серии Наука и жизнь

Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос

Похожие книги

Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос