Читаем Космос становится больше. Хаббл. Расширение Вселенной полностью

Первое слагаемое зависит только от времени, значит второе тоже может зависеть только от времени при помощи неизвестной функции, которую можно назвать 3H(t). Но

Затем мы можем написать:

Так как H(t) — только функция времени, в формулу можно также включить дивергенцию. Решение представляет собой уравнение типа

где векторная функция — некая неизвестная функция. Это выражение действительно является решением дифференциального уравнения, так как дивергенция ротора любого вектора равна нулю. Она не может зависеть от позиционного вектора — только от его модуля, иначе был бы нарушен принцип изотропии. Но ротор такой функции равен нулю, поэтому мы получаем

Это эквивалент формулы Хаббла с уточнением: скорость должна быть чистым расширением. Функция H(t) остается неизвестной, для ее определения нужно использовать другие уравнения, а лучше — релятивистские уравнения сохранения импульса и энергии, которые выходят за рамки нашего приложения. H(t) может принимать положительные, отрицательные, нулевые значения, знак может меняться с течением времени. Наблюдения показывают, что сегодня H0 положительна. Наблюдается расширение.

Рассмотрим альтернативное рассуждение, которое кажется более простым и основано на уравнении Бернулли. Этот ученый объяснил нам много любопытного в поведении жидкостей. Его знаменитая формула в своей самой известной форме выглядит так:

p+1/2pv2 = постоянная,

где р — давление. Эта формула выполняется, когда в разных точках жидкости гравитация одинакова. Если имеются изменения гравитации, надо добавить в формулу потенциальную гравитационную энергию. Нам не обязательно учитывать давление, так как космологический принцип говорит, что давление во всех точках одинаково; его значение может перейти

ко второму члену и добавиться к постоянной. Потенциальная энергия на единицу объема записывается как ~(GMl)/r, где масса М = р4лг*/3, затем

-4/3Gp^2r^2 + 1/2pv^2

Заметьте, что М(r) — масса, содержащаяся в сфере с радиусом r.

Чтобы найти величину постоянной, рассмотрим «здесь» с r = 0. Мы не видим скорости расширения. Очевидно, что r = 0, постоянная второго члена равна нулю. Таким образом, получаем

v = (8/3Gp) 1/2 r = H0r

Мы не только получили закон Хаббла, но и рассчитали величину H0:

H0 = (8/3Gp).

Об этом ли значении говорят релятивистские модели? Не совсем — это величина, соответствующая критической, или плоской, Вселенной с нулевой кривизной. Так как мы исходили из классических уравнений, сложно претендовать на большую точность. Формулировки, представленные в этом приложении, конечно же, очень поверхностны, но они иллюстрируют то, что закон Хаббла — прямое следствие космологического принципа и его мог бы открыть даже студент-физик. Естественно, апостериори все открытия выглядят очевиднее.

Мы не отрицаем заслуг Хаббла, ведь наши рассуждения ретроспективны. Когда процессы известны, их легче оценивать, так что это приложение можно назвать предсказанием постфактум. В любом случае, доказательство закона требовало наблюдений. В те времена непросто было утверждать, что Вселенная расширяется. Как мы знаем, даже Эйнштейн не решался этого делать.


Список рекомендуемой литературы

Battaner, Е., Un fisico еп la calle, Granada, Editorial Universidad de Granada, 2010.

—: Ftsica de las noches estrelladas, Barcelona, Tusquets, 2010.

—: iQuees el universe?iQue es el hombre?, Madrid, Alianza, 2011.

Christianson, G. E., Edwin Hubble. Mariner of the Nebulae, Chicago, University of Chicago Press, 1995.

Hubble, E., The Realm of the Nebulae, Yale, Yale University Press, 1936.

Kragh, H„ Historia de la cosmologia, Barcelona, Critica, 2008.

Rees, M., Antes delprincipio. El cosmos у otros universes, Barcelona, Tusquets Editores, 1999.

Sharov, A. S. у Novikov, I. D., Edwin Hubble. The Discoverer of the Big-Bang Universe, Cambridge, Cambridge University Press, 2005.


Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука