В рамках кометной гипотезы становится понятным, почему светлые ночи наблюдались к западу от района катастрофы, но не были отмечены к востоку от него. Солнце утром находилось на востоке, а пылевой хвост кометы под действием солнечных лучей и частиц, как мы помним, вытягивается в противоположном от него направлении: в данном случае к западу. Кометная пыль, рассеивая и отражая идущие из-за горизонта солнечные лучи, делала ночи после катастрофы таким светлыми.
Физические процессы, которые могли привести к взрыву кометного ядра в атмосфере, описали К.П. Станюкович и его аспирант В.П. Шалимов.
Мы уже знаем, что, тормозясь в атмосфере, при трении о воздух космическое тело любого состава с поверхности сильно разогревается. Если падает каменный или железный метеорит, то за короткое время торможения тепло с его поверхности не успевает проникнуть внутрь. У ледяного тела теплопроводность ещё меньше. И казалось бы, в этом случае тем более тепло не может передаваться внутрь ядра кометы. Но лёд, в отличие от каменных или железных масс, прозрачен для излучения. Именно передача тепла излучением может за время движения ледяного ядра в атмосфере разогреть всё его тело до некоторой критической температуры, при которой лёд практически одномоментно закипит и испарится. Этот фазовый переход учёные назвали тепловым взрывом.
Другой механизм взрыва в 1970-е г. разрабатывал первый директор Института космических исследований академик Георгий Иванович Петров. Учёный, видный специалист в области механики и газовой динамики, иначе описал характер происходивших процессов и явлений. Учёный исходил из предположения, что ядро кометы, вошедшее в атмосферу с космической скоростью, представляло собой очень рыхлую слабо связанную массу замёрзших газов и воды, напоминавшую огромный снежный ком. Эта масса, хоть и была «загрязнена» железистыми и силикатными частицами, имела аномально низкую плотность — меньше 0,01 г/см2
. Как показывали расчёты, только при этом допущении мог осуществиться «сценарий», предложенный академиком Петровым. Созданная быстро движущимся телом уплотнённая воздушная волна долгое время, как в мешке, удерживала «ком» от рассеивания. Так и продолжала эта масса свое движение, до высоты 5–10 км, где «снежный ком» резко затормозился и произошёл отрыв от него ударной волны. «Убежавшая» вперёд ударная волна ударила о земную поверхность. При этом она не только вызвала огромные разрушения, но распалась и сама, образно говоря, «выпустив джина из бутылки», перестала удерживать космическое тело. > Рыхлое ядро кометы, к тому времени уже разделённое сопротивлением воздуха на части, было настолько разогрето снаружи и изнутри силой трения, что за короткие мгновения испарилось, неимоверно увеличившись в объёме. Это и был тунгусский взрыв.Всё расчёты были верны и с математической стороны, и со стороны механики. Только астрономическая сторона проблемы не была взята в расчёт. Космических объектов столь низкой плотности внутри орбиты Юпитера существовать не может в принципе. Плотность только что выпавшего снега и то в несколько раз выше — около 0,07 г/см3
. Даже если тело с такой плотностью создать искусственным путём, то ещё в межпланетном пространстве под действием солнечного излучения, приливных сил Солнца и больших планет оно будет разрушено и прекратит свое существование. Тем более столь рыхлый космический объект, не выдержав сопротивления атмосферы, рассеется и испарится на высотах около 100 км, где «сгорают» метеоры.Тем не менее концепция академика Петрова была поддержана некоторыми авторами за рубежом.
Решению загадки Тунгусского метеорита может помочь поиск и исследование его вещества. Этот поиск ведётся начиная с первых экспедиций Л.А. Кулика и до настоящего времени. Только теперь в основном ищут не фрагменты метеорита, а рассеянные продукты того страшного взрыва. Здесь применяют несколько различных методов.
Участникам экспедиции КСЭ из Томского университета удалось обнаружить, так сказать, природное хранилище вещества 1908 г. Это были отложения верховых сфагновых болот. Оказалось, что ежегодно откладывается новый слой отмирающих жёлтых сфагновых мхов. Исследователи смогли определить глубину залегания мохового слоя 1908 г. С 1960-х гг. по этому методу были вырезаны и изучены многие сотни колонок торфа на площади свыше 10 тыс. км2
. Их послойное изучение дало ценнейшие результаты.