Тщательное изучение многих сотен спектрограмм принесло разгадку. Дело в том, что для конденсаций характерна очень высокая температура. Если на поверхности Солнца «всего лишь» 6 тысяч градусов, в короне уже «пожарче» — до одного миллиона, то в конденсациях температура достигает 3–5 миллионов градусов. Вот почему атомы, словно не выдержав чудовищной жары, «раздеваются», теряя свои электроны. Так установили природу солнечного рентгена: его порождает местный разогрев отдельных участков короны.
Ну и какое нам, казалось бы, дело до этого? Рентгеновское излучение до земной поверхности все равно не доходит. Может ли оно существенно повлиять на свойства окружающего нас мира?
Оказывается, может, и самым непосредственным образом. Наряду с ультрафиолетом рентгеновское излучение обеспечивает нам дальнюю радиосвязь. Обрушиваясь на атмосферу, оно разбивает ее атомы, срывая с них электроны и превращая в ионы. Так образуется ионосфера — «зеркало», отражающее радиоволны наземных радиостанций. Но это еще не все.
Рентгеновские лучи пагубно действуют на покрытие космических аппаратов, и с этим приходится считаться конструкторам. Белая краска, например, с течением времени темнеет. А это может нарушить температурный режим внутри спутника. Поэтому сейчас все покрытия для космических аппаратов проходят обязательную проверку на рентгеноустойчивость.
Вот вам конкретная польза от исследований, которые еще далеко не закончены.
Давно было замечено, что вспышка на Солнце неизменно сопровождается нарушением радиосвязи на всей освещенной части планеты. Долгое время было непонятно, как работает механизм этого явления. Все встало на свои места, когда удалось установить, что в том месте, где происходит вспышка, резко, в тысячу раз, увеличивается рентгеновское излучение. Оно-то и вызывает ионосферные возмущения, из-за которых нарушается радиосвязь на Земле.
Однако связать рентгеновское излучение со вспышками — это полдела. Надо было определить, где и отчего возникают вспышки, как они протекают? Для этих исследований в Физическом институте АН СССР имени П. Н. Лебедева придумали и построили специальную аппаратуру. С ее помощью ученые выяснили, что солнечное вещество при вспышке нагревается до 30–50 миллионов градусов. Эта чудовищная температура порождает резкий всплеск мощного, или, как говорят специалисты, жесткого, рентгеновского излучения. Энергия такого своеобразного взрыва, происходящего в солнечной атмосфере, эквивалентна миллиарду водородных бомб! Откуда же она берется на Солнце?
И снова спутники и ракеты понесли в космос фотокамеры, спектрографы, поляриметры… В конце концов ученые убедились, что вспышка черпает энергию из магнитного поля Солнца. Когда оно перестраивается, то в плазме солнечной короны образуются мощные электрические токи, подобно тому как они возбуждаются в динамо-машине. Эти токи при определенных условиях нагревают солнечное вещество до немыслимо огромной температуры. Вот вам и вспышка. Иногда вспышку вызывает своего рода «разрыв» токовой цепи. Тогда в этом месте частицы плазмы разгоняются до колоссальных скоростей и вырываются в пространство. Между прочим, некоторые из них — протоны — могут быть опасными для космонавтов.
Исследования рентгеновского излучения позволили лучше понять природу вспышек на Солнце. И все же при этом завеса, скрывающая тайны нашего светила, лишь чуть-чуть приоткрылась. И надо планировать новые эксперименты, разрабатывать новые приборы, создавать новые теории.
Вот и получается, что свои самые смелые надежды на будущие фундаментальные открытия, на дальнейший прогресс астрономии и астрофизики ученые связывают с космонавтикой. Здесь уместно вспомнить одну истину: крупнейшие открытия в астрономии были сделаны не в результате поисков, предпринятых на основе предсказаний или догадок, а просто благодаря тому, что наблюдения стали вестись методами и средствами, резко отличавшимися от имевшихся до этого. Эта истина справедлива для всех этапов развития астрономии от телескопчика Галилея до советского шестиметрового телескопа-гиганта БТА и от него — до выхода в необъятные просторы космоса.
Об этом узнали сравнительно недавно, каких-нибудь двадцать лет назад. Оказалось, что если бы наши глаза могли видеть только рентгеновское излучение, то звездное небо над нами выглядело бы совсем иначе. Правда, рентгеновские лучи, испускаемые Солнцем, удалось обнаружить еще до рождения космонавтики, но о других источниках в звездном небе и не подозревали. На них наткнулись случайно.
В 1962 году американцы, решив проверить, не исходит ли от поверхности Луны рентгеновское излучение, запустили ракету, снабженную специальной аппаратурой. Вот тогда-то, обрабатывая результаты наблюдений, радиоастроном Джиаккони убедился, что приборы отметили мощный источник рентгеновского излучения. Он располагался в созвездии Скорпион. Ему дали обозначение Х-1 (икс-один). С помощью высотных ракет на карту звездного неба вскоре нанесли более 30 рентгеновских источников.