Читаем Коснуться невидимого, услышать неслышимое полностью

Для тактильных и болевых ощущений как будто ясно. А для температурных? Выше уже указывалось на необходимость учитывать такие, например, факторы, как кровоснабжение в области измерения или зависимость порогов от температуры окружающей среды. В наших исследованиях влияние этих факторов стабилизировалось, когда испытуемый погружал руку в ванну с водой определенной температуры и достигал состояния температурной адаптации. Несомненно, что подобная методика в условиях клиники существенно усложняет обследование. Не каждый больной может опустить руку в воду; а если потребуется определить пороги в точках на спине или животе — не обойтись без ванны. Все это не очень-то удобно. Однако ультразвук дает еще одну возможность — вообще отказаться от погружения в воду. При этом иногда невозможно знать заранее, какое температурное ощущение испытывает больной — тепла или холода, но характер ощущения не влияет существенно на величину порога, выраженную в микронах смещения среды в фокальной области излучателя. Вместе с тем появляется дополнительная информация: если в условиях комнатной температуры воздуха и при нормальной температуре тела появляется ощущение холода — это свидетельство малого или ухудшившегося кровоснабжения, тепла — свидетельство его увеличения или обильности. Не исключено, что в процессе дальнейших исследований могут быть разработаны и количественные оценки кровоснабжения. Все изложенное — непосредственные выводы из гипотезы температурной рецепции. Они нуждаются в дальнейшей физиологической и патофизиологической разработке, в клинической проверке.

Пока температурную рецепцию в клинических условиях с помощью ультразвука не оценивали. Немного данных и относительно болевой рецепции. Клиническое применение на сегодняшний день нашло измерение тактильной чувствительности. С помощью фокусированного ультразвука определялись пороги на коже пальцев рук у здоровых людей и больных с разными неврологическими заболеваниями: сирингомиелией, спондилогенным шейным радикулитом, ишемической цервикальной миелотией, остаточными явлениями мозгового кровоизлияния и некоторыми другими. У всех групп больных выявлено повышение тактильных порогов по сравнению с нормой, иногда вплоть до полного выпадения чувствительности. У части больных с повышенными тактильными порогами болевые пороги оказались сниженными по сравнению с нормой. Этот факт дает основание считать перспективным использование ультразвука в неврологии не только для сравнения ощущений в норме и патологии, но и для количественного соотношения порогов ощущений разной модальности. Только ультразвук и отчасти электрический ток дают возможность единицами одной размерности характеризовать пороги различных ощущений.

Фокусированный ультразвук в отоларингологии начали применять в первую очередь в отологии. Известно, что исследование слуха с помощью измерения порогов составляет основу отологической диагностики и даже выделяется в особый раздел — аудиологию. Для слуховых ощущений, вызываемых фокусированным ультразвуком, также можно определить пороги. Последние у нормально слышащих людей отличаются от порогов больных с различными нарушениями слуховой функции. Это один из путей использования фокусированного ультразвука в диагностике заболеваний слуховой системы. Другой путь — сравнение порогов каждого обследуемого на звук и ультразвук. В главах 3 и 4 были представлены данные о том, что фокусированный ультразвук может действовать не только на рецепторы, но и на проводящие нервные структуры уха. Место приложения отражается на пороговых величинах. В зависимости от характера заболевания можно ожидать различий в закономерностях восприятия звука и ультразвука. Ультразвук модулировали по амплитуде чистыми тонами, теми, которые применяются в аудиологии, — от 125 до 8000 Гц. При использовании импульсов ультразвука частоту их следования меняли также от 125 до 8000 Гц.

В величинах одинаковой размерности нет возможности сравнивать пороговые кривые нормально слышащих для звука и ультразвука. Однако у людей с нормальным слухом доступно сравнение в относительных величинах, например в децибелах от минимального порога слышимости, рассчитываемых как 20 lg In / I0, где In — величина порога для звука данной частоты или для фокусированного ультразвука с той же частотой модуляции, I0 — порог для звука 1000 Гц или для ультразвука частотой модуляции 1000 Гц. Для частоты звука или модуляции ультразвука 500—2000 Гц аудиограмма и ультразвуковая кривая совпадают. На частотах меньше 500 Гц пороги на звук выше, чем на ультразвук, а на более высоких, чем 2000 Гц, частотах — ниже. Подобное сравнение, как удалось показать, усложняет диагностическое сопоставление кривых. Поэтому для их сравнения оценивается изменение порогов слухового ощущения пациента относительно порогов нормально слышащих, которые принимаются за уровень отсчета.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука