Один важный аспект этого перехода особенно красив и соответствует духу учения Пифагора; в 1961 г. Дьёрдь фон Бекеши получил за него Нобелевскую премию. Поскольку толщина базилярной мембраны уменьшается вдоль длинной оси, различные ее части стремятся колебаться в разном темпе. У более широких частей инерция больше, поэтому они вибрируют медленнее, на более низких частотах, в то время как более узкие части вибрируют на более высоких частотах. (Из-за этого эффекта существует разница в общем тоне типично мужских и типично женских голосов. Во время пубертатного периода мужские голосовые связки утолщаются, что приводит к более низким частотам вибрации и более глубокому голосу.) Итак, после того, как звук после множества преобразований приводит окружающую жидкость в движение, реакция базилярной мембраны оказывается различной в разных местах по ее длине. Низкочастотные звуки приведут более широкие части в интенсивное движение, в то время как высокочастотные звуки затронут более узкие части[7]
. Таким образом, информация о частоте перекодируется в информацию о местоположении.Если спиралевидная улитка является для слуха тем же, чем глаз для зрения, то кортиев орган – это его сетчатка. Он работает параллельно с базилярной мембраной и находится очень близко от нее. Его детальная структура сложна, но, грубо говоря, он состоит из волосковых клеток и нейронов, причем каждая волосковая клетка связана со своим собственным нейроном. Движение базилярной мембраны, проходящее через промежуточную жидкость, передает усилие на волосковые клетки. Волосковые клетки двигаются в ответ, и их движение вызывает электрическое возбуждение[8]
в соответствующих нейронах. Его частота остается той же, что и частота стимуляции, которая, в свою очередь, абсолютно такая же, как частота первоначального звука. (Для тех, кто хочет знать больше: частотные характеристики возбуждения зашумлены, но они содержат сильный компонент с частотой исходного сигнала.) Из-за того, что кортиев орган примыкает к базилярной мембране, его нейроны возбуждаются с частотой, зависящей от их пространственного расположения. Для нашего восприятия созвучий очень важно, что сигналы от нескольких одновременно звучащих тонов не полностью смешиваются. На различные тоны преимущественно отзываются разные нейроны! Таков физиологический механизм, который позволяет нам так хорошо различать тоны.Другими словами, наше внутреннее ухо следует совету Ньютона – и предвосхищает его опыты со светом, проводя великолепный анализ с разложением поступающего звука на чистые тона. (Как мы обсудим позже, наша сенсорная способность анализировать частоту световых сигналов или, другими словами, цветовую составляющую света основана на других принципах и гораздо более ограничена.)
Теперь мы можем перейти к третьей части нашей истории. В ней сигналы от первичных сенсорных нейронов в кортиевом органе сочетаются и переходят в последующие нейронные слои в мозге. О том, что происходит здесь, мы знаем не так точно. Но только на этой стадии мы можем подойти вплотную к нашему главному вопросу:
«Почему звуки, частоты которых соотносятся как небольшие целые числа, дают приятное созвучие?»
Давайте рассмотрим, что происходит в мозге, когда звуки двух различных частот проигрываются одновременно. Тогда мы получаем два набора первичных нейронов, активно реагирующих с той же частотой, как и вибрация струны, породившая всю цепочку процессов. Эти первичные нейроны передают свой сигнал в глубины мозга «более высоким» уровням нейронов, где сигналы сочетаются и объединяются.
Некоторые из этих нейронов следующего уровня получат входящие сигналы от обоих наборов первичных возбужденных нейронов. Если частоты первичных нейронов соотносятся как небольшие целые числа, тогда их сигналы могут быть синхронизированы. (В этом обсуждении мы упрощаем реальный отклик, игнорируя шум и считая его в точности периодичным.) Например, если звуки формируют октаву, один набор нейронов будет колебаться в два раза быстрее другого и каждый нейрон из более медленной группы будет вступать в те же предсказуемые отношения с нейроном быстрой. Таким образом, нейроны, воспринимающие сигнал от обоих первичных наборов, получат вполне предсказуемый повторяющийся шаблон, который легко интерпретировать. Из предыдущего опыта (хотя, возможно, это врожденный инстинкт) эти вторичные нейроны – или более поздние нейроны, интерпретирующие их поведение, – «поймут» сигнал. Таким образом, для них становится легче предсказать будущие входящие сигналы (следующие повторы), а простые предсказания будущего поведения будут порождаться на протяжении многократных восприятий вибрации, пока звук не изменит свой характер.