Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Когда в начале тысячелетия Даррелл впервые услышал о законе Бенфорда, он испытал примерно те же эмоции, что и люди, пережившие большую утрату: удивление, отрицание, гнев и принятие. «Сначала у меня возникла мысль: “Почему я не слышал об этом раньше?” Затем я подумал: “Этого просто не может быть!” А когда в конце концов понял суть этого закона, на меня снизошло озарение: “Вот это да! Ведь это еще один инструмент, который можно использовать”». Теперь в ходе расследования финансовых махинаций Даррелл прежде всего проверяет первые цифры номеров банковских счетов и данных в бухгалтерских книгах компаний. Финансовые данные, включающие в себя величины нескольких порядков (другими словами, которые отражают количество, измеряемое в единицах продукции или в десятках, сотнях и тысячах долларов), должны подчиняться закону Бенфорда. Если этого не происходит, значит, либо существует обоснованное объяснение (например, регулярная закупка товаров стоимостью, скажем, 40 долларов за единицу, которая влечет за собой повышение вероятности появления цифры 4), либо имеют место преступные действия. Отклонение от закона Бенфорда — это признак того, что соответствующие финансовые данные требуют более тщательного анализа.

Даррелл показал на висевшую на стене рамку, в которую была помещена первая страница газеты со статьей о вынесении приговора Уэсли Родсу — местному финансовому консультанту, укравшему у инвесторов миллионы долларов, чтобы покупать на эти деньги классические модели автомобилей. «Закон Бенфорда помог нам привлечь его к ответственности», — сообщил Даррелл. Отчеты, которые Родс отправлял инвесторам, не прошли проверку на соответствие закону первой цифры, а это означало, что что-то с ними не так. Проанализировав отчеты более внимательно, Даррелл обнаружил, что Родс сфальсифицировал данные. Теперь Даррелл характеризует закон Бенфорда так: «Это ДНК количественного исследования, исходное предположение о том, как работают цифры. И, как я уже неоднократно объяснял в суде, хорошо то, что здесь речь идет о науке. Открытие Бенфорда — не теория. Это закон».

Метод анализа чисел на предмет их соответствия закону Бенфорда все чаще используется для выявления манипуляций с данными, причем не только в контексте финансовых махинаций, но и во всех тех случаях, к которым этот закон применим. В 2006 году Скотт де Марчи и Джеймс Гамильтон из Университета Дьюка написали, что предоставленные промышленными предприятиями сведения об уровне выброса свинца и азотной кислоты не удовлетворяют закону Бенфорда, а это говорит о вероятности искажения информации[39]. На основании закона Бенфорда политолог Мичиганского университета Уолтер Мибейн заявил о возможной фальсификации результатов президентских выборов в Иране. Мибейн проанализировал все протоколы голосования и обнаружил существенные расхождения в количестве голосов за Махмуда Ахмадинежада с законом Бенфорда, тогда как в результатах его соперника, сторонника реформ Мир-Хосейна Мусави, никаких отклонений от этого закона не наблюдалось. «Самое простое объяснение, — писал Мибейн, — состоит в том, что в результаты Ахмадинежада были искусственным образом включены дополнительные голоса, тогда как результаты Мусави остались нетронутыми». Ученые используют закон Бенфорда и в качестве инструмента диагностики. Так, во время землетрясений верхние и нижние значения показаний сейсмографа подчиняются данному закону. Малколм Сэмбридж из Австралийского национального университета проанализировал две разные сейсмограммы, на которых было зафиксировано землетрясение в Индонезии в 2004 году, — одна была записана в Перу, а другая в Австралии. Данные, отображенные на первой сейсмограмме, полностью соответствовали закону Бенфорда, тогда как на второй имели место небольшие отклонения. Сэмбридж объяснил это тем, что в районе Канберры могло произойти незначительное сейсмическое возмущение. Так проверка данных на соответствие закону первой цифры позволила выявить землетрясение, которое осталось незамеченным.

Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и фактически любой позиции в записи числа. На представленном ниже рисунке продемонстрирована частотность вторых цифр в процентном выражении (среди которых есть теперь и цифра 0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и результатов выборов. По мере продвижения к следующим позициям данные о частоте появления цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых цифр. В мире действительно гораздо больше единиц!

В суде Доррелла часто просят обосновать закон Бенфорда. В таких случаях Даррелл становится перед лекционной доской и начинает считать от единицы и далее, записывая названные цифры. При этом он чувствует себя школьным учителем, проводящим урок математики. «Это просто выводит из себя судью и адвоката», — иронизирует он.

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг