Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Однако, когда я увижу хотя бы одно число, мои шансы повысятся, если я сделаю следующее:

1) — сам выберу произвольное число — пусть это будет число k;

2) — если k окажется меньше числа на перевернутом листе, я скажу, что перевернутое число самое большое;

3) — если k будет больше числа на перевернутом листе, я назову самым большим числом то, которое скрыто, то есть указано на неперевернутом листе.

Другими словами, моя стратегия состоит в том, чтобы выбирать число, которое я вижу, пока произвольное число k не окажется больше. В таком случае я выбираю то число, которого еще не видел.

Для того чтобы понять, почему моя стратегия дает мне преимущество, необходимо проанализировать значение числа k с учетом двух чисел, написанных на листах бумаги. Существует три возможности: 1) k меньше обоих чисел; 2) k больше обоих чисел; 3) k находится между двумя числами.

В первом случае, какое бы число я ни увидел, я выбираю именно его. Вероятность того, что я окажусь прав, составляет 50 на 50. Во втором случае, какое бы число я ни увидел, я выбираю другое число. Мои шансы снова 50 на 50. Наиболее интересна третья ситуация, в ней я выигрываю в 100 процентах вариантов. Если я вижу меньшее число, то выбираю другое, а если вижу большее число, то выбираю его. Если по счастливому стечению обстоятельств мое произвольное число попадает между двумя числами, которые написаны на листиках бумаги, я выиграю в любом случае!

(Здесь нужно подробнее объяснить, как именно я выбираю число k, поскольку у него всегда должен быть шанс оказаться между любыми двумя заданными числами. В противном случае у меня не будет преимущества. Например, если вы всегда записываете отрицательные числа, а мое произвольное число положительное, то оно никогда не окажется между вашими двумя числами, а мои шансы на выигрыш остаются 50 на 50. Мое решение состоит в том, чтобы выбирать число по закону нормального распределения, поскольку это позволяет найти наиболее вероятное значение из всех положительных и отрицательных чисел. О нормальном распределении вам нужно знать только то, что оно обеспечивает способ выбора случайного числа, имеющего шанс попасть между двумя любыми другими числами.)

Вероятность того, что число k попадет между написанными вами числами, честно говоря, небольшая. Но поскольку шанс все же есть, то, если мы будем играть достаточное количество раз, вероятность моего выигрыша превысит 50 процентов. Я не могу знать заранее, когда выиграю, а когда проиграю. Но я и не говорил, что это возможно. Я сказал лишь то, что смогу выиграть в более чем половине случаев. Если вы хотите сделать так, чтобы мои шансы оставались как можно ближе к 50 на 50, вам необходимо указывать числа, которые максимально близки друг к другу. Тем не менее, если эти числа не равны, всегда существует шанс того, что я выберу число, попадающее между ними, и до тех пор, пока этот шанс математически возможен, я буду выигрывать в эту игру чаще, чем проигрывать.

В предыдущей главе я ввел понятие числа π, которое начинается с 3,14159 и показывает, сколько раз диаметр помещается на окружности. В данной главе мы познакомились с числом е, которое начинается с 2,71828 и представляет собой числовую сущность экспоненциального роста. Эти числа — наиболее часто используемые математические константы, о которых часто упоминают одновременно, хотя они появились в результате разных исследований и у них разные математические свойства. Любопытно, что эти два числа очень близки друг к другу и отличаются всего на 0,5. В 1859 году американский математик Бенджамин Пирс предложил обозначить число π символом , а число е — символом , для того чтобы показать, что эти два числа в какой-то мере подобны друг другу. Однако это невразумительное обозначение так и не прижилось.

Обе константы — это иррациональные числа, другими словами, числа, десятичная часть которых содержит бесконечное количество никогда не повторяющихся цифр. Попытки найти особо элегантную арифметическую комбинацию этих двух чисел стали своего рода математическим состязанием. Мы никогда не найдем уравнения со строгим равенством, но:

π45=e6,

что верно до семи значимых цифр;

eπ — π = 19,999099979…

что очень близко к 20.

И самое впечатляющее уравнение:

eπ√163 = 262537412640768743,99999999999925007…

что всего на одну триллионную меньше целого числа!

В 1730 году шотландский математик Джеймс Стирлинг открыл следующую формулу:

Эта формула позволяет рассчитать приближенное значение n! — факториала числа n, который, как мы уже видели, представляет собой результат умножения 1 × 2 × 3 × 4 × … × n.

Факториал — это простая операция, сводящаяся к умножению целых чисел друг на друга, поэтому несколько неожиданно видеть в правой части формулы квадратный корень, π и е.

Когда n = 10, приближенное значение менее чем на 1 процент отличается от истинного значения 10! и чем больше число n, тем точнее становится приближенное значение в процентах. Поскольку факториалы — огромные числа (10! — это 3 628 800), представленная выше формула — это нечто потрясающее.

Между π и е явно что-то происходит.

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг