Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Физические законы Ньютона проросли из крохотного зерна бесконечно малых величин — величин, которые меньше всего остального, но больше нуля. Однако, несмотря на их плодотворную роль в создании новой науки, концепцию малых величин подвергали критике за внутреннюю противоречивость. «Что это за… крохотные приращения? — упорствовал философ и епископ Джордж Беркли. — Это и не конечные величины, и не бесконечно малые величины, и даже не ничто. Почему бы нам не называть их призраками величин, ушедших в мир иной?»[155]. Резкие замечания Беркли вызывали ропот среди ученых, вполне справедливо считавших исчисление величайшим математическим достижением эпохи Просвещения. Но все же священник был в какой-то мере прав. Хотя концепция бесконечно малых величин и обеспечивала получение правильных ответов, она не была до конца продуманной с научной точки зрения. Полемика, которую спровоцировал Беркли, поставила математиков на путь переоценки ценностей и самокритики. Какие концепции приемлемы, а какие — нет? В какой мере математика должна соответствовать здравому смыслу?

9. Назвние етой главы содержит три ошбки

Автор исследует математическое доказательство. Он высмеивает логическую дедукцию и встречается с анонимным членом тайной математической секты

Предлагаю вам решить головоломку. Однажды я поднялся на гору, переночевал на вершине, а на следующий день спустился вниз по тому же маршруту. Есть ли такая точка, в которой я был в одно и то же время в разные дни?

Подумайте об этом секунду.

Или две.

Ответ: да. Представьте себе, что оба путешествия происходят в один день. Если я одновременно поднимаюсь вверх и спускаюсь вниз, неизбежно наступит момент, когда я столкнусь с самим собой, и тогда значения времени и высоты совпадут.

Если вы примете аргумент о том, что в оба дня должен быть момент времени, когда я находился на одной высоте, я доволен: мое доказательство сделало свое дело. Математическое доказательство — это всего лишь инструмент, используемый одним человеком для того, чтобы убедить другого человека в истинности математического утверждения — а я вас убедил[156]

Однако более требовательного математика могут не удовлетворить мои доводы. Он может отбросить их по причине недостаточной строгости. Где доказательство того, что я столкнусь сам с собой? Давайте нарисуем график, отображающий мое восхождение от подножия горы на высоте А к ее вершине на высоте В, а также наложим на него маршрут моего спуска на следующий день, как показано на рисунке ниже. Теперь вопрос стоит по-другому: существует ли точка, в которой эти две линии пересекутся? Большинство читателей ответят: конечно же, есть! Но придирчивого математика мне так и не удалось убедить.

До конца XVIII века считалось, что если кривая поднимается от высоты А до высоты В, то она обязательно должна пройти каждую точку между А и В. На интуитивном уровне это утверждение кажется очевидным. В действительности оно согласуется с тем, как определялась тогда непрерывная кривая. Однако, когда математики внимательнее проанализировали свойства непрерывности, они пришли к выводу о необходимости более четких определений. Утверждения, которые воспринимались раньше как нечто само собой разумеющееся, были переведены в категорию теорем, требующих доказательства на основании еще большего количества исходных предположений. К их числу относилось и приведенное выше утверждение о том, что непрерывная кривая с минимальным значением А и максимальным значением В обязательно должна пройти все промежуточные значения; сейчас оно известно как теорема о промежуточном значении. Но ее доказательство настолько сложное, что его изучают только в университетах, хотя его будет достаточно, чтобы убедить нашего дотошного друга. В итоге он согласится с тем, что две кривые на представленном выше графике пересекаются в определенной точке, поскольку это утверждение вытекает из доказательства за несколько шагов.

Маршрут восхождения на вершину горы и спуска к ее подножию

Эксперименты — движущая сила науки. Доказательства — движущая сила математики. Существует множество способов проведения экспериментов, так же как и множество методов доказательств математических утверждений. В этой главе мы рассмотрим некоторые из них. Кроме того, проанализируем, как изменилось отношение к доказательствам, и пообщаемся с анонимным членом тайного общества, исповедующего математическую строгость. Но сначала давайте перекусим.

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг