Большинство химических элементов периодической таблицы Менделеева имеют по несколько изотопов. Как уже рассказывалось в главе 2, все изотопы одного элемента ведут себя в химическом отношении одинаково. Каждый из них имеет одинаковое число протонов в ядре своих атомов и одинаковое число электронов, окружающих это ядро. Однако каждый из изотопов имеет слегка отличный вес, поскольку ядра разных изотопов содержат неодинаковое число нейтронов. Вид изотопа определяется числом, которое означает сумму протонов и нейтронов в ядре атома (и тем самым его вес, точнее — массу). Таким образом, в каждом глотке воздуха, который вы вдыхаете, большая часть атомов кислорода принадлежит изотопу кислород 16, но некоторые принадлежат изотопу кислород 18 и совсем ничтожное число — изотопу кислород 17. Но что касается вашего тела, то большая часть его состоит из всех изотопов кислорода.
Радиоактивные изотопы неустойчивы. Радиоактивный распад направлен на достижение устойчивости с помощью изменения соотношения между числом протонов и нейтронов в ядрах атомов. Это осуществляется путем выбрасывания некоторых частиц из ядра с большой энергией, и в этом процессе образуется другой химический элемент. Например, мы видели, что уран, распадаясь, образует свинец (хотя в этом конкретном случае преобразование ядер урана в свинец включает целую серию радиоактивных распадов, а не один-единственный этап). Явление радиоактивности было открыто в последние годы девятнадцатого столетия и с тех пор интенсивно изучается. Ученые быстро узнали путем экспериментов, что радиоактивность является статистическим явлением, то есть что каждый радиоактивный изотоп характеризуется определенной вероятностью того, что он распадется в заданный промежуток времени. Это легче всего представить, вообразив большое количество радиоактивных атомов в стакане. Представим себе, что мы можем их видеть и определять их число в любой момент времени. Если мы проделаем такое наблюдение через какой-нибудь промежуток времени, скажем, через минуту, то обнаружим, что определенная часть атомов распадется; при наблюдении еще через минуту распадется та же часть оставшихся атомов и так далее. Поскольку радиоактивность является статистическим явлением, и особенно если количество атомов в стакане изначально было мало, то доля распадающихся атомов может слегка колебаться от минуты к минуте, но в среднем она будет постоянной. Тот же эксперимент, но проведенный в разное время и при широком разнообразии окружающих условий, даст тот же результат. Это указывает на то, что вероятность распада определенной доли данного изотопа за определенное время является постоянной величиной. Закономерность распада удобно выразить через время полураспада изначального количества атомов данного изотопа в образце породы, то есть время распада половины изначальных атомов изотопа. Математически период полураспада прямо пропорционален величине постоянной распада и для большинства радиоактивных изотопов он определен с высокой точностью. Именно эти данные являются ключом ко всем применяющимся в геологии методам «абсолютного» датирования.
Возможно, вы поняли из этого описания, что радиоактивный распад описывается экспоненциальным законом распределения: количество распадающихся за каждую единицу времени атомов в начале процесса велико, но с течением времени становится все меньше. Именно доля атомов, которые распадаются в каждый из одинаковых промежутков времени, оказывается постоянной, что видно из рис. 6.2.
Почему же в природе существуют неустойчивые радиоактивные изотопы? Вместе с устойчивыми элементами большая часть их образуется в результате ядерных реакций в недрах звезд или же при взрывах сверхновых звезд которые регулярно происходят в нашей Галактике. Они являются частью того вещества, которое вошло в состав Земли при ее образовании; изотопы с очень долгим периодом полураспада распались лишь частично. Они все еще встречаются на Земле. Но существуют и изотопы со столь коротким периодом полураспада, что любые их количества, существовавшие в период образования Земли, давно уже полностью распались. Тот факт, что они все же встречаются на Земле, говорит о том, что они продолжают образовываться в каких-то ныне протекающих процессах.
Рис. 6.2. Количество радиоактивного изотопа углерод 14 (здесь оно показано в произвольных единицах), содержащееся, например, в растении, остается постоянным, пока оно живо и обменивается СO2 с атмосферой. После того как оно умирает (отмечено цифрой 0 на графике), содержание в нем углерода 14 уменьшается наполовину каждые 5700 лет, в связи с его распадом до нерадиоактивного азота. Точки на кривой расположены через интервал времени, равный времени полураспада. Очевидно, что после пяти или шести таких периодов остается очень мало углерода 14. Тот же процесс показан и в верхней части рисунка в условной форме исчезновения углерода 4 из первоначально полного стакана.