Рисунок атома, как его представляют почти все, состоит из одного-двух электронов, которые обращаются вокруг ядра, наподобие планет, вращающихся вокруг Солнца. Это изображение было создано в 1904 году японским физиком Хантаро Нагаока на основе не более чем догадки. Оно абсолютно неверно, но все равно надолго сохранилось. Как не раз отмечал Айзек Азимов,133
оно вдохновляло поколения писателей-фантастов на создание произведений о мирах внутри миров, в которых атомы становятся маленькими обитаемыми солнечными системами или наша Солнечная система оказывается всего лишь пылинкой в значительно более крупной системе. Даже сегодня Европейский центр ядерных исследований (ЦЕРН) использует созданное Нагаокой изображение в качестве эмблемы своего сайта в Интернете.134 На самом деле, как вскоре поняли физики, электроны совсем не похожи на вращающиеся по орбитам планеты, а больше напоминают лопасти крутящегося вентилятора, умудряясь одновременно заполнять каждый кусочек пространства на своих орбитах (с одной существенной разницей, что если лопасти вентилятора толькоСтоит ли говорить, что очень немногое из этого было понятно в 1910 году или даже годы спустя. Открытие Резерфорда поставило рад крупных неотложных проблем. Не последняя среди них состояла в том, что электроны не могут обращаться вокруг ядра, не падая на него. По законам традиционной электродинамики электрон при вращении должен очень быстро — практически мгновенно — израсходовать свою энергию и по спирали упасть на ядро с гибельными последствиями для них обоих. Была также проблема: каким образом протоны с их положительными зарядами могут быть связаны друг с другом внутри ядра, не разорвав на куски самих себя и весь атом. Становилось ясно, что все происходящее там, в мире очень малого, не подчиняется законам макромира, которые мы берем за основу.
По мере того как физики углублялись в субатомное царство, они начинали понимать, что его реальность не только отличается от всего, что нам известно, но и от всего, что вообще можно себе представить. «Поскольку поведение атома столь сильно отличается от нашего повседневного опыта, — заметил однажды Ричард Фейнман, — очень трудно к этому привыкнуть, и оно представляется необычным и загадочным каждому в равной мере, как начинающему, так и опытному физику». Когда Фейнман высказывался по этому поводу, у физиков уже было полвека, чтобы приспособиться к странностям поведения атомов. Представьте, что должен был испытывать Резерфорд и его коллеги в начале 1910-х годов, когда все это было совершенно новым и неизведанным.
Одним из сотрудников Резерфорда был мягкий обходительный датчанин Нильс Бор. В 1913 году Бору, бившемуся над строением атома, пришла в голову идея, настолько взволновавшая его, что он отложил медовый месяц и сел за написание статьи, которая стала поворотным пунктом в науке.
Поскольку физики не могли видеть столь малые объекты, как атомы, им приходилось делать выводы об их строении, наблюдая, как они реагируют на различные воздействия. Так, например, Резерфорд обстреливал фольгу альфа-частицами. Неудивительно, что иногда результаты таких экспериментов вызывали новые вопросы. Одной из загадок долгое время были особенности спектра водорода. Вид этого спектра говорил о том, что атомы водорода излучают энергию на определенных длинах волн и не проявляются на других. Будто кто-то находящийся под наблюдением обнаруживается то в одном, то в другом месте, но ни разу не был замечен в движении между ними. Никто не мог понять, почему так происходит.
Ломая голову над этой проблемой, Бор неожиданно наткнулся на решение и поспешил изложить его в своей знаменитой статье, озаглавленной «О строении атомов и молекул». В ней объяснялось, как электроны могут удержаться от падения на ядро: для этого выдвигалось предположение, что они могут занимать только отдельные, строго определенные орбиты. Согласно этой новой теории электрон перемещается с орбиты на орбиту, исчезая на одной и мгновенно возникая на другой,