Читаем Краткая история сотворения мира. Великие ученые в поисках источника жизни на Земле полностью

Созданное Дарвином дерево жизни постепенно дополнялось и совершенствовалось благодаря новым данным палеонтологии и возможностям радиоизотопного анализа. Новые методы позволяют измерить возраст костей и, следовательно, более точно определить родственные отношения между видами. По мере развития микробиологических методов анализа организмы стали разделять на одноклеточные и многоклеточные, а позднее на две большие категории: организмы с клеточным ядром стали называть эукариотами, а организмы без ядра – прокариотами. В конечном итоге все живые существа разделили на пять царств: животные, растения, грибы, одноклеточные эукариоты и прокариоты. Однако данных относительно двух последних царств было недостаточно. Палеонтологические летописи о самых многочисленных, простых и, по-видимому, самых древних видах были невероятно скудными, и положение микробов на дереве жизни оставалось неоднозначным.

Карл Вёзе решил прояснить ситуацию. В 1969 г. он написал Френсису Крику удивительное письмо – своего рода план того, что Вёзе собирался сделать в последующие 20 лет и что он надеялся получить (и в конечном итоге получил). Вёзе писал Крику, что планировал использовать ДНК для выявления, как он выразился, «внутренних палеонтологических летописей», указывающих на истинные родственные связи между организмами. «Выявляя предковые последовательности генов, можно надеяться увидеть следы эволюции клеток». Он осознал возможность использовать генетический код для заполнения пробелов в наших знаниях о ранних этапах эволюции, которые не удается заполнить с помощью палеонтологических данных. Он планировал секвенировать ген (то есть определить его полную нуклеотидную последовательность), являющийся общим практически для всех живых существ, а затем на основании его вариаций воссоздать историю эволюции.

К началу 1960-х гг. процесс секвенирования белков (определения последовательности аминокислот в молекуле белка) превратился в рутинный анализ. Эмиль Цукеркандль и Лайнус Полинг выделяли белки из современных организмов, которые можно было разместить на филогенетическом дереве. Они показали, что степень различия белковых последовательностей зависела от того, насколько давно разошлись соответствующие виды организмов в соответствии с палеонтологическими данными. Измеряя различия между белковыми последовательностями из разных источников, можно рассчитать, как давно организмы разошлись от общего предка (ученые называют это принципом «молекулярных часов»).

Однако не все белки встречаются во всех организмах. Вёзе нужно было найти что-то, что содержалось в клетках всех известных организмов, копировалось с высокой точностью и подвергалось мутациям достаточно редко, чтобы можно было проследить за изменениями за несколько миллиардов лет. Он выбрал гены рибосомной 16S РНК (сокращенно 16S рРНК), названной так в соответствии со скоростью ее осаждения при центрифугировании. Гены 16S рРНК достаточно длинные, так что с их помощью можно получить подробную информацию, но не слишком длинные, и поэтому их не очень сложно секвенировать.

К моменту начала работы по секвенированию Вёзе ушел из лаборатории General Electric и оказался в Иллинойском университете в Урбана-Шампейне по приглашению молекулярного биолога Сола Шпигельмана, который когда-то присутствовал на лекции Вёзе в Институте Пастера в Париже. В Иллинойсе Вёзе руководил небольшой группой исследователей, самым талантливым из которых был Джордж Фокс, принимавший активное участие во всех самых важных открытиях научной группы. Вместе они начали сложный процесс секвенирования генов 16S рРНК.

Все анализы приходилось делать вручную – автоматические секвенаторы появились лишь спустя несколько десятилетий. Вёзе с сотрудниками выбрали метод, предложенный в 1965 г. британским биохимиком Фредериком Сенгером – одним из немногих ученых, дважды удостоенных Нобелевской премии. Процедура предполагала ферментативное разделение генов РНК на небольшие фрагменты, с которыми проще было работать. Потом фрагменты подвергали секвенированию, а затем восстанавливали всю молекулу и определяли полную нуклеотидную последовательность. Процедура была дорогой, и Вёзе обратился за финансовой поддержкой в программу НАСА по астробиологии. Работа была чрезвычайно медленной и кропотливой. Поначалу на секвенирование одного гена 16S рРНК уходили месяцы. Большинству ученых такая работа показалась бы невероятно занудной, но Вёзе она нравилась – это было похоже на сборку гигантского пазла.

Перейти на страницу:

Все книги серии Большая наука

Похожие книги

27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература